访问总结

访问总结:

显式访问:
	列访问:
		1.列访问可以直接使用中括号访问,也可以使用【列标签列表】访问
		2.但是使用BOOL列表默认访问的是行
		3.多列访问:df.loc[:,BOOL列表]
		4.属性访问:df.col_name
	行访问:
		1.df.loc[row_name] df.loc[[row_name1,row_name2]]
		2.使用BOOL列表访问 df.loc[BOOL列表] df[BOOL列表]
	元素访问:
		1.df.loc[row_name,col_name]

隐式访问:所有的逻辑都要使用iloc解决,解决模式与二维数组完全一致
	行:df.iloc[row_index] df.iloc[row_index列表]
	列:df.iloc[:, col_index] df.iloc[:, col_index列表]
	元素:df.iloc[row_index,col_index]
行切片
	df.loc[]
	直接使用[]进行切片
列切片
	df.loc[]
直接使用[]时,索引是列索引,切片是行切片
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值