智能反射面论文1

来源:https://ieeexplore.ieee.org/document/9367569

D. Dampahalage, K. B. Shashika Manosha, N. Rajatheva and M. Latva-aho, “Intelligent Reflecting Surface Aided Vehicular Communications,” 2020 IEEE Globecom Workshops (GC Wkshps, Taipei, Taiwan, 2020, pp. 1-6, doi: 10.1109/GCWkshps50303.2020.9367569.

RIS辅助车辆通信

摘要

考虑上行链路中利用IRS的可实现速率最大化问题,在IRS信道估计方面有很多挑战,本文提出两种方案减少IRS的信道估计开销,一种方法是使用反射元件的分组,另一种是根据设备的位置进行无源波束成形。数值模拟,RIS可以给现有通信带来明显改善,此外,使用基于光线追踪的模拟来验证使用IRS的好处。

introduction

大多关于IRS的理论工作都假定,在发射器到IRS和IRS到接收器的信道中,IRS有完美的CSI,由于IRS由无源元件组成,信道估计具有挑战性。【5】提出两种可用信道估计方案:作者认为IRS除了无源元件外还有一些有源元件,这些有源元件可以用来测量信道。第一种方法:用压缩感知技术,从稀疏的测量中构建完整的CSI。第二种方法:深度学习模型训练与入射信号互动。
为实现智能交通系统(ITS)的概念,已对车辆通信网络进行了广泛的研究【8】,各种车辆应用都考虑在内,包括面向安全、舒适和娱乐的应用【9】,这些应用给现有的通信和网络技术带来巨大的挑战。数据密集型传感器的引入,如激光成像检测和测距,导致车辆通信网络必须支持Gb/s的数据速率【9】.如此高的数据速率需要大的系统带宽,这就促使人们利用毫米波进行车辆通信,该频段具有较大的带宽。【9】.但毫米波有较高的路径损耗。因此降低了传输范围。【10】提出了IRS克服这些挑战。
IRS在信道估计方面带来的新挑战,在车辆网络的高移动性方面也是如此。估计每个反射路径的信道系数需要很大的开销。
本文在毫米波车辆通信系统中使用IRS,尽管【13,14】中已经考虑了IRS辅助系统的速率最大化问题。就作者所知,这是第一个考虑车辆通信问题的工作。本文使用基于逐次细化的算法【7】优化IRS相移。提出两种IRS相位优化方案,以减少信道估计的开销,并促进大型反射元件的分组。另一种方法是利用其位置的无源波束成形。数值模拟,使用IRS,可实现速率显著提高,此外,作者用商业射线追踪工具Wireless InSite【15】评估了系统在移动性下的性能。

system model and problem formulation</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值