东周筮法

(本文完成于2009年7月30日)

《周易》的学习有一定难度。要理解、需记背的东西太多。不用一定的方法或技巧,可能很难较快地踏入这个华人永恒的经典之门。《系辞》中似乎告诉了我们一些快速入门的方法,那就是:

所乐而玩者,爻之辞也。”,但爻辞古文,并不能让大多数现代人“乐”而“玩”之。 

是故君子居则观其象而玩其辞”。又是“玩”古辞,现代人确实不易读懂,何况还有那么多自古就多有的争议之辞。 

动则观其变而玩其占”。“占”可以玩一玩。会占之后,既可娱己也可娱众,从而有所“乐”矣。所以,在有了一点点《易》学基础之后,先学习一下“筮法”,然后“玩其占”,再去“玩其辞”,从而可以在现代社会中“居则观其象”,“动则观其变”了。

然则,很多讲《易》之人,说《易》之书,都少谈或不谈筮法,或者含糊其词,让听者读者总是云山雾绕的感觉。下面以高亨先生的《周易大传今注》的相关内容为蓝本,撰写了一个较为详细的推演过程,希望能对初学《易》的朋友有所帮助。 

“揲蓍法”是《周易.系辞传》里记载的一种筮法,经唐宋人整理而发掘出来,即用五十根蓍草,去一不用,经分二、挂一、揲四、归奇的四营十八变后得出卦象,然后用卦爻辞判定吉凶。

大衍之数五十(有五),其用四十有九。 

(备蓍草五十策。拿出一策横置于一旁,在整个占筮过程中保持不动,以象征太极。) 

分而为二以象两。 

(将四十九策蓍草任意分成上下两个部分,以代表天和地。)

(将四十九策蓍草任意分成左右两个部分)

挂一以象三。

(分开两部分后,再从上方之蓍草中抽出一策,坚置于上下两部分之间,以代表人立于天地之间。) 

(从右边随意拿出一策,夹在左手的无名指和小指之间)

揲之以四,以象四时。

(将上方的蓍草每四策为一组来数。因此,剩余蓍草的数目或一策,或二策,或三策,或四策。) 

(用右手来数左边的蓍草,四策四策的数)

归奇于扐以象闰。

(将上方所余的蓍草置于中间的那一根蓍草的左旁。以代表闰月。) 

(把剩余的蓍草[或一策,或二策,或三策,或四策],夹在中指和无名指之间)

五岁再闰,故再扐而后挂。 

(再取下方的蓍草,每四策为一组来数。剩余蓍草的数目或一策,或二策,或三策,或四策,将其置于中间的那一根蓍草的右旁。) 

(再用左手去数右边的蓍草,把剩余的蓍草夹在食指和中指之间。至此为一变。然后,把左右两边剩下的蓍草合而为一,再任意分为两部分,再从右边蓍草中拿出一策放在小指和无名指之间。用右手来数左边的蓍草,四策四策的数,所余蓍草夹在无名指和中指之间。用左手来数右边的蓍草,四策四策的数,所余蓍草夹在中指和食指之间。此为二变。然后,把左右两边剩下的蓍草合而为一,再任意分为两部分,再从右边蓍草中拿出一策放在小指和无名指之间。用右手来数左边的蓍草,四策四策的数,所余蓍草夹在无名指和中指之间。用左手来数右边的蓍草,四策四策的数,所余蓍草夹在中指和食指之间。此为三变。三变始得一爻。三变之后,左右所剩的蓍草的数目只能是36策或32策或28策或24策。若结果为36或24,则在此爻旁边做上记号。演卦结束,所得的六个爻组成的卦称为本卦。将所带记号的爻反转,其它爻不动,所得的卦称为变卦。根据得到的本卦和变卦,对照《易经》的经文来断定吉凶。)

以上为一变。再将上下两部分蓍草并而为一,挂在中间的蓍草不动。如上法数之,是为二变。 

(即是将上下两部分蓍草合而为一后,再任意分为上下两部分。先从上方蓍草中抽出一策挂在上下部分的中间,然后对上方部分的蓍草四策为一组来数,所余蓍草放在中间蓍草的左旁;再将下方蓍草四策为一组来数,所余蓍草放在中间著草的右旁。此为第二变。) 

又将上下两部分蓍草并而为一,挂在中间的蓍草仍然不动。如上“二变”之法数之,是为三变。 

三变始得一爻。 

{

三变之后,将上下两部分再合而为一,数蓍草的策数,其结果可参考以下规律,得出一爻。 

1、三十六策,即九揲,画一阳爻。但“九”为老阳之数,一卦起完后,要变成阴爻; 

2、二十四策,即六揲,画一阴爻。但“六”为老阴之数,一卦起完后,要变成阳爻; 

3、二十八策,即七揲,画一阳爻。“七”为少阳之数。 

4、三十二策,即八揲,画一阴爻。“八”为少阴之数。 

得出一爻后,将所用的四十九策蓍草并而为一,重新从“分而为二以象两”开始,得出第二爻; 

如上法,得出第三、四、五、六爻。 

六爻既得,一卦即成。从变数上来讲,一爻需要“三变”,所以六爻共需十八变。

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物多场景目标检测数据集 一、基础信息 数据集名称:陆生动物多场景目标检测数据集 数据规模: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 分类类别: - 家畜类:Cattle(牛)、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(大象)、Monkey(猴子) - 禽类:Chicken(鸡) 标注格式: YOLO格式标注,包含目标边界框坐标和10类动物标签,支持多目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场环境等多角度拍摄数据 二、适用场景 农业智能化管理: 支持开发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物多样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项圈等设备提供多动物识别训练数据 教育科研应用: 适用于动物行为学研究和计算机视觉教学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三大场景需求 标注质量优异: YOLO格式标注严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景多样性突出: 包含航拍视角、近距离特写、群体活动等多种拍摄角度和场景 大规模训练保障: 超12,000张标注图片满足深度神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值