文生图提示词:人工物品

物体和元素

--人工物品

Man-made Objects

涵盖了多种人工物品,可以用于精确地表达 AI 生成图像中所需的人造环境和物体。

Building 建筑

Bridge 桥梁

Road 道路

Vehicle 交通工具

Car 汽车

Bicycle 自行车

Airplane 飞机

Train 火车

Ship 船只

Furniture 家具

Chair 椅子

Table 桌子

Sofa 沙发

Bed

Cabinet 橱柜

Lamp

Clock 时钟

Computer 电脑

Television 电视

Phone 电话

Camera 相机

Refrigerator 冰箱

Microwave 微波炉

Oven 烤箱

Toaster 烤面包机

Blender 搅拌器

Washing Machine 洗衣机

Dryer 烘干机

Air Conditioner 空调

Heater 加热器

Fan 风扇

Vacuum Cleaner 吸尘器

Toolbox 工具箱

Hammer 锤子

Screwdriver 螺丝刀

Wrench 扳手

Drill 钻机

Saw

Nail 钉子

Screw 螺丝

Bolt 螺栓

Wire 电线

Pipe 管道

Valve 阀门

Gear 齿轮

Engine 发动机

Battery 电池

Light Bulb 电灯泡

Elevator 电梯

Escalator 自动扶梯

Stairs 楼梯

Window 窗户

Door

Roof 屋顶

Wall 墙壁

Fence 栅栏

Signpost 指示牌

Street Light 路灯

Traffic Light 交通灯

Billboard 广告牌


提示词 1:

A close-up of an antique clock with intricate designs, showcasing the detailed craftsmanship on its face and hands. 

a0c0954d624bc2dbc2560a85736384c2.png

一个复杂设计的古董钟表的特写,展示其表面和指针上精细的工艺。

提示词 2:

A macro shot of a vintage typewriter keys, highlighting the texture and lettering on the metallic surfaces.

486d65748d313d056c4810c2593cb69a.png

一张复古打字机键盘的微距镜头,突出金属表面的纹理和字母。

提示词 3:

A detailed close-up of a classic camera lens, showing the aperture blades and the focus ring with depth of field effect.

928d92a8b94da178b658c99066b1da57.png

经典相机镜头的详细特写,展示光圈叶片和带有景深效果的对焦环。

提示词 4:

A mid-shot of a beautifully arranged workspace with a modern laptop, designer table lamp, and organized stationery on a sleek desk.

8671b04e9cb6c6e573dbe868ad9341cb.png

一个美观安排的工作空间的中景图像,包括一台现代笔记本电脑、设计师桌灯,以及放置在光滑书桌上整齐的文具。

9cecf3213bdfbfd952e58851943ce6b1.jpeg

“点赞有美意,赞赏是鼓励”

### 文本到提示词的批量生成 为了实现文本到提示词的批量生成,可以考虑以下几种方法和技术: #### 1. 自动化自然语言处理模型 利用预训练的语言模型(如GPT系列、BERT等),通过输入一组关键词或者主题描述,自动生成多样化的提示词。这些模型能够理解上下文并生成连贯的句子[^1]。 ```python from transformers import pipeline generator = pipeline('text-generation', model='gpt2') keywords = ["风景", "日落"] prompts = generator(keywords, max_length=50) for prompt in prompts: print(prompt['generated_text']) ``` 上述代码片段展示了一个简单的例子,其中使用了Hugging Face Transformers库中的`pipeline`函数来加载GPT-2模型,并针对给定的关键字生成可能的提示词。 #### 2. 条件语义增强技术 借鉴CSA-GAN的研究成果,在生成过程中加入条件语义信息以提高生成质量和多样性。这种方法可以通过编码器解码器架构完成,先提取文本特征再映射至视觉空间。 #### 3. 提示扩展算法 类似于CogView3项目中提到的技术,采用特定策略扩充原始短句成为更加详细的描述性文字。这种做法有助于提升最终产出片的质量以及与预期概念的一致性[^2]。 #### 4. 数据驱动型模板匹配法 建立一个庞大的高质量样本数据库,当接收到新的请求时,检索最相似的历史案例作为基础模板加以修改调整形成新版本。此方式依赖于前期积累大量优质素材资源。 综上所述,无论是借助先进的AI算法还是传统编程技巧都可以达成目的;具体选择取决于实际应用场景需求和个人偏好等因素影响下的权衡考量结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值