2021-08-08:背包问题:

 一篇文章吃透背包问题!(细致引入+解题模板+例题分析+代码呈现) - 分割等和子集 - 力扣(LeetCode) (leetcode-cn.com)

常见的背包类型主要有以下几种:
1、0/1背包问题:每个元素最多选取一次
2、完全背包问题:每个元素可以重复选择
3、组合背包问题:背包中的物品要考虑顺序
4、分组背包问题:不止一个背包,需要遍历每个背包

而每个背包问题要求的也是不同的,按照所求问题分类,又可以分为以下几种:
1、最值问题:要求最大值/最小值
2、存在问题:是否存在…………,满足…………
3、组合问题:求所有满足……的排列组合

因此把背包类型和问题类型结合起来就会出现以下细分的题目类型:
1、0/1背包最值问题
2、0/1背包存在问题
3、0/1背包组合问题
4、完全背包最值问题
5、完全背包存在问题
6、完全背包组合问题
7、分组背包最值问题
8、分组背包存在问题
9、分组背包组合问题
这九类问题我认为几乎可以涵盖力扣上所有的背包问题

作者:eh-xing-qing
链接:https://leetcode-cn.com/problems/partition-equal-subset-sum/solution/yi-pian-wen-zhang-chi-tou-bei-bao-wen-ti-a7dd/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

分类解题模板
背包问题大体的解题模板是两层循环,分别遍历物品nums和背包容量target,然后写转移方程,
根据背包的分类我们确定物品和容量遍历的先后顺序,根据问题的分类我们确定状态转移方程的写法

首先是背包分类的模板:
1、0/1背包:外循环nums,内循环target,target倒序且target>=nums[i];

「01背包」是指给定物品价值与体积(对应了「给定价值与成本」),在规定容量下(对应了「限定决策规则」)如何使得所选物品的总价值最大。

倒序的原因就是遍历dp的时候,外层循环nums的每个元素不会被覆盖,也就是每个给出的元素只覆盖一次
2、完全背包:外循环nums,内循环target,target正序且target>=nums[i];

正序的话那么遍历dp的时候每个元素则是在给定的范围内都不限量的
3、组合背包:外循环target,内循环nums,target正序且target>=nums[i];
4、分组背包:这个比较特殊,需要三重循环:外循环背包bags,内部两层循环根据题目的要求转化为1,2,3三种背包类型的模板

然后是问题分类的模板:
1、最值问题: dp[i] = max/min(dp[i], dp[i-nums]+1)或dp[i] = max/min(dp[i], dp[i-num]+nums);
2、存在问题(bool):dp[i]=dp[i]||dp[i-num];
3、组合问题:dp[i]+=dp[i-num];

作者:eh-xing-qing
链接:https://leetcode-cn.com/problems/partition-equal-subset-sum/solution/yi-pian-wen-zhang-chi-tou-bei-bao-wen-ti-a7dd/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        total = sum(nums)
        if total %2 != 0:
            return False
        amount = total //2
        dp = [False]*(amount+1)
        dp[0] = True
        for num in nums:
            for i in range(amount,num-1,-1):
                dp[i] = dp[i] or dp[i-num]
        return dp[amount]
                

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [0]+[10001]*amount
        print(dp)
        dp[0] = 0 
        for coin in coins:
            for i in range(coin,amount+1):
                dp[i] = min(dp[i],dp[i-coin]+1)
        return dp[-1] if dp[-1] != 10001 else -1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值