BTree索引
初始化介绍:
如图一颗B+树,浅蓝色表示磁盘块,每个磁盘块包括几个数据项(深蓝色)和指针(黄色)。
如磁盘块1包括数据项17和35,包含指针P1、P2、P3;P1表示小于17的磁盘块,P2表示在17-35之间的磁盘块,P3表示大于35的磁盘块。
真实的数据只存在于叶子节点,非叶子节点不存储真实数据,只存储指引搜索方向的数据项。
如17、35并不真实存在数据表中。
查找过程(用上图查找数据项29):
首先把磁盘块1由磁盘加载到内存,此时发生一次IO;在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,因为内存时间非常短(相比磁盘的IO)可以忽略不计。
将磁盘块1的P2指向的磁盘块3由磁盘加载到内存,发生第二次IO;确定29在26和30之间,指向磁盘块3的P2指针。
将磁盘块3的P2指针指向的磁盘块8加载到内存,发生第三次IO,同时内存中做二分查找找到29。
查询结束,总计三次IO。
真实的情况
3层的B+树可以表示上百万的数据,如果上百万的数据查找只需要3次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要上百万次IO。
总结:
减少IO次数可以减少查询时间,提高性能,那么怎么减少IO次数?
答案:增加树的广度而非深度。B+树的叶子节点可以多。
其他索引
-
Hash索引
-
full-text全文索引
-
R-Tree索引