Python零基础投喂(前四节回顾练习)

这篇博客回顾了Python基础知识,通过实例讲解如何计算iris_data数据集中sepalLength和petalLength两列之间的相关系数,使用numpy的corrcoef函数得出结果。
摘要由CSDN通过智能技术生成

回顾练习

'''本次练习使用 鸢尾属植物数据集 .\iris.data ,在这个数据集中,包括了三类不同的鸢尾属植物:
Iris Setosa,Iris Versicolour,Iris Virginica。每类收集了50个样本,因此这个数据集一共包含了
150个样本。
sepallength:萼片长度
sepalwidth:萼片宽度
petallength:花瓣长度
petalwidth:花瓣宽度
'''
# 1.导入鸢尾属植物数据集,保持文本不变。
import numpy as np
outfile = r'E:\Python 学习代码\Dataset01\iris.data'
iris_data = np.loadtxt(outfile, dtype=object, delimiter=',', skiprows=0)
print(iris_data[0:10])
[['5.1' '3.5' '1.4' '0.2' 'Iris-setosa']
 ['4.9' '3.0' '1.4' '0.2' 'Iris-setosa']
 ['4.7' '3.2' '1.3' '0.2' 'Iris-setosa']
 ['4.6' '3.1' '1.5' '0.2' 'Iris-setosa']
 ['5.0' '3.6' '1.4' '0.2' 'Iris-setosa']
 ['5.4' '3.9' '1.7' '0.4' 'Iris-setosa']
 ['4.6' '3.4' '1.4' '0.3' 'Iris-setosa']
 ['5.0' '3.4' '1.5' '0.2' 'Iris-setosa']
 ['4.4' '2.9' '1.4' '0.2' 'Iris-setosa']
 ['4.9' '3.1' '1.5' '0.1' 'Iris-setosa']]
'''
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris # 导入数据集
iris = load_iris() # 载入数据
X= iris.data
y = iris.target
iris_data=np.column_stack((X,y))#将2个矩阵按列合并

outfile = r'.\iris.data'
pd.DataFrame(iris_data).to_csv(outfile)

iris_data = np.loadtxt(outfile, dtype=object, delimiter=',', skiprows= 1)
print(iris_data[:, 1:][0:10])

'''
# 2.求出鸢尾属植物萼片长度的平均值、中位数和标准差(第1列,sepallength)
print(sepalLength[0:10])
print(np.mean(sepalLength
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值