首先,由于个人能力原因,对于论文中的提出的SVM算法只能做一些简单的分析,如若有错误的地方,欢迎留言,非常感谢您的阅读!!
SVM算法
首先,简单介绍一下关于SVM算法:SVM算法又名支持向量机,它是一种二分类模型,擅长处理小样本分类问题,有较强的泛化能力并且可以处理非线性分类问题,通过多个SVM的组合使用还可以用来处理多分类问题。
关于支持向量机的根本思想:
第一点:SVM是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本映射到高维特征空间使其线性可分,从而使得高维特征空间采用采用线性算法对样本的非线性特征进行线性分析成为可能。
第二点:SVM基于结构风险最小化理论在特征空间中构建最优分割超平面,使得学习器全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。
关于具体在对人体行为的特征识别内容,将会在接下来的内容进行详细介绍,并且涵盖SVM算法的原理以及过程。
特征采集
人体行为特征的采集,主要通过CSI进行,采集的行为包括:(l)站立不动;(2)缓慢匀速行走;匀速推缩手臂;(5)水平方向挥臂;(6)垂直方向挥臂等一系列人的姿势,动作。
自己简单的手画了一下人体行为:
收集并记录这些特征的信道状态信息(CSI),CSI呈现出不同频率下多径传播的幅度和相位,从而更加精确地刻画了具有频率选择性衰落特性的信道。
在这直接引用论文中给出的CSI图像:
SVM算法的分类模型设计
采用SVM算法把CSI幅度和相位信息的变化特征作为输入,并且训练在假设的空间中找到一个最优分隔面把正反样本分隔开,其学习的策略是间隔最大准则。
所指的间隔就是样本点到分隔面的最小距离。分割正负样本的分隔面有很多,这个间隔最大准则实际上是:意味着要找到那个以最大的确信度将正负样本分隔开并是该模型应对局部干扰最大的分割面,作为最优分割面(如下图)。
使用SVM进行二分类,就需要找到最优分割面,令最优分割面为(Markdown编辑器的公式输入好麻烦,只能截图了):
其中,
为一个样本的特征向量,n为其特征维数。
假定有一个线性可分的样本的样本集
要得到最优分割面,需要满足以下的表达式:
上式是目标函数,下式是约束条件,是个二次规划。表达式是一个以w为自变量的目标函数,而下式是以w的线性函数为约束条件,它的可行域是一个标准凸集,
所以可得出结论该表达式拥有全局最优解。使用拉格朗日乘子方法计算求解,这里主要是数学求解方程的问题。
但是面对非线行为特征的时候,就需要采用非线性SVM算法(个人的原因,这个没有学过(QAQ,以前太懒了(QAQ))
总结
首先,采用SVM算法解决人体行为特征识别是可行的,只是对于线性特征和非线性特征,需要使用不同类型的SVM分类器。
本文的SVM采用了这样一种策略:将低维空间向高维空间转换,使得在低维空间不可分的样本在高维空间中变得可分,从而再按上述方法求解最优超平面。
SVM是一种很典型的二分类算法,对于多分类问题SVM同样适用。可以采用组合多个SVM进行多分类,常用的多分类方式有“一对一”和“一对多”。SVM采用统计理论,广泛应用于图像处理、文本分类、姿态识别等领域。