codeforces gym100801 Problem G. Graph

codeforces gym100801 Problem G. Graph

传送门:https://codeforces.com/gym/100801

题意:

给你一个DAG图,你最多可以进行k次操作,每次操作可以连一条有向边,问你经过连边操作后最小拓扑序的最大值是多少

题解:

最小拓扑序:与普通拓扑序不同的是,用一个小根堆记录入度为0的点做拓扑排序即可

怎么样使得最小拓扑序最大呢?已知拓扑序是入度小的点在前面,那么,如果我们可以使得大的点的度数尽量小或者是小的点度数尽量大就可以使得拓扑序变大了,由于我们只有加边的操作,那么我们可以将边尽量从大的点往小的点去连边

我们定义小根堆q以便于得到最小拓扑序

定义大根对p,以便于大的点先连边

每次取出小根堆中的点时,我们都将小根堆中的点往大根堆里面放,如果小根堆为空时,我们就需要对大根堆中的点进行连边操作了,取出大根堆中的点,进行拓扑排序的正常操作记录答案即可;

代码:

/**
 *        ┏┓    ┏┓
 *        ┏┛┗━━━━━━━┛┗━━━┓
 *        ┃       ┃  
 *        ┃   ━    ┃
 *        ┃ >   < ┃
 *        ┃       ┃
 *        ┃... ⌒ ...  ┃
 *        ┃       ┃
 *        ┗━┓   ┏━┛
 *          ┃   ┃ Code is far away from bug with the animal protecting          
 *          ┃   ┃   神兽保佑,代码无bug
 *          ┃   ┃           
 *          ┃   ┃        
 *          ┃   ┃
 *          ┃   ┃           
 *          ┃   ┗━━━┓
 *          ┃       ┣┓
 *          ┃       ┏┛
 *          ┗┓┓┏━┳┓┏┛
 *           ┃┫┫ ┃┫┫
 *           ┗┻┛ ┗┻┛
 */
// warm heart, wagging tail,and a smile just for you!
//
//                            _ooOoo_
//                           o8888888o
//                           88" . "88
//                           (| -_- |)
//                           O\  =  /O
//                        ____/`---'\____
//                      .'  \|     |//  `.
//                     /  \|||  :  |||//  \
//                    /  _||||| -:- |||||-  \
//                    |   | \\  -  /// |   |
//                    | \_|  ''\---/''  |   |
//                    \  .-\__  `-`  ___/-. /
//                  ___`. .'  /--.--\  `. . __
//               ."" '<  `.___\_<|>_/___.'  >'"".
//              | | :  `- \`.;`\ _ /`;.`/ - ` : | |
//              \  \ `-.   \_ __\ /__ _/   .-` /  /
//         ======`-.____`-.___\_____/___.-`____.-'======
//                            `=---='
//        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
//                     佛祖保佑      永无BUG
#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define ls rt<<1
#define rs rt<<1|1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********\n")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]\n"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]\n"
#define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]\n"

const double eps = 1e-8;
const int mod = 1e9 + 7;
const int maxn = 3e5 + 5;
const int INF = 0x3f3f3f3f;
const LL INFLL = 0x3f3f3f3f3f3f3f3f;
struct EDGE {
    int v, nxt;
} edge[maxn << 1];
int head[maxn], tot;
void add_edge(int u, int v) {
    edge[tot].v = v;
    edge[tot].nxt = head[u];
    head[u] = tot++;
}
int degree[maxn];
vector<int> G[maxn];
priority_queue<int, vector<int>, greater<int> >q; //小根堆放现在的点
priority_queue<int> p;//大根堆放要连的点
int ans[maxn];
int num, used;
int a[maxn], b[maxn];
void solve(int u) {
    //排序排序
    ans[++num] = u;
    for(int i = 0; i < G[u].size(); i++) if(!--degree[G[u][i]]) q.push(G[u][i]);
    if(q.empty()) {
        if(!p.empty()) {
            int v = p.top(); p.pop();
            //大往小连边
            G[u].push_back(v);
            //记录加的边
            a[++used] = u; b[used] = v;
            solve(v);
        }
    }
}
int main() {
#ifndef ONLINE_JUDGE
    FIN
#endif
    freopen("graph.in", "r", stdin);
    freopen("graph.out", "w+", stdout);
    int n, m, k;
    scanf("%d%d%d", &n, &m, &k);
    memset(head, -1, sizeof(head));
    memset(degree, 0, sizeof(degree));
    tot = 0;
    for(int i = 1, u, v; i <= m; i++) {
        scanf("%d%d", &u, &v);
        add_edge(u, v);
        G[u].push_back(v);
        degree[v]++;
    }
    for(int i = 1; i <= n; i++) {
        if(degree[i] == 0) q.push(i);
    }
    while(!q.empty()) {
        if(k && (q.size() > 1 || (!p.empty() && q.top() < p.top()))) {//大的往小的连
            k--;
            int u = q.top();
            q.pop();
            p.push(u);
            //如果入度为0的点用完了,就开始连边
            if(q.empty()) {
                int v = p.top(); p.pop();
                G[ans[num]].push_back(v);
                //记录加的边
                a[++used] = ans[num]; b[used] = v;
                solve(v);
            }
        } else {
            //越是小的点加边的时间就越晚
            int v = q.top(); q.pop();
            solve(v);
        }
    }
    for(int i = 1; i <= n; i++) {
        printf("%d%c", ans[i], i == n ? '\n' : ' ');
    }
    printf("%d\n", used);
    for(int i = 1; i <= used; i++) {
        printf("%d %d\n", a[i], b[i]);
    }
    return 0;
}
posted @ 2019-05-20 23:50 buerdepepeqi 阅读( ...) 评论( ...) 编辑 收藏
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值