多目标预估 - 跷跷板 or 负迁移

Architectures

  1. MMoE将bottom拆分成多个expert,不同task对expert进行自适应组合
    MMoE

  2. PLE引入task独享expert,与共享expert优化任务间的拉扯
    PLE

  3. MoLA在PLE基础上,通过引入Low-rank Adapters降低模型复杂度(尤其是当task很多时)。并进一步,引入辅助loss Task-wise Decorrela- tion (TwD) ,强制使不同task的组合权重差异化,从而缓解参数纠缠带来的异构冲突问题(b - bath_size)。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  4. FDN将特征分解成正交的task特性特征和共性特征两个部分(红框),并对于每个task specific expert都预估该task的label作为辅助loss(蓝框)强化task specific的学习
    在这里插入图片描述
    正交loss
    在这里插入图片描述
    task辅助loss
    在这里插入图片描述
    总loss
    在这里插入图片描述

Optimization Strategy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值