RecSys行为序列建模 - 基于用户正负隐式反馈的去噪网络DRPN

《Denoising Neural Network for News Recommendation with Positive and Negative Implicit Feedback》

1 解决问题

隐式反馈不一定代表用户真实兴趣,存在噪声

  1. 假阳:用户点击后立刻退出
  2. 假阴:推了多个兴趣方向,但实际只点了一个

2 模型结构

在这里插入图片描述

  • 文本title特征走左边,id特征走右边图网络
  • 每个item title特征经过ATTN进行融合得到一个vec
  • 文本类特征和id类特征的序列融合原理基本相同,存在一定diff

2.1 文本类特征的正/负隐式反馈融合

在这里插入图片描述
对于文本类特征序列,主要由两部分构成:content-based aggregator (CA) 和 denoising aggregator (DA)。CA为序列内融合,借助ATTN强化同序列(正/负反馈序列) T ~ \widetilde{T} T ,最终融合
在这里插入图片描述

DA则通过两种序列的组合对用户目标(正/负)序列去噪:(以下正序列举例公式)

  1. 同序列内融合:对于 p j t ∈ P t p^t_j \in P^t pjtPt
    在这里插入图片描述
    在这里插入图片描述
  2. 异序列融合:
    在这里插入图片描述
  3. 两种序列融合组合:
    在这里插入图片描述
    在这里插入图片描述
    最终,得到了四种序列表示:
  • CA产出的:正序列 p s t p^t_s pst、负序列 n s t n^t_s nst
  • DA产出的:正序列 p h t p^t_h pht、负序列 n h t n^t_h nht
    通过直接拼接正负序列和目标item得到 f t f^t ft,计算各个序列权重 β \beta β
    在这里插入图片描述

2.2 id类特征融合

对于id类特征,构建邻接图, ( r i , r j ) (r_i,r_j) (ri,rj)表示两个item都被某同一个用户点过
在这里插入图片描述
基于图中items的邻接结点 r k o ∈ N ( r o ) r^o_k \in N(r^o) rkoN(ro),计算该节点 r o r^o ro,其中m为多头attn参数。将多个attn进行concat获得表示 r ^ o \hat{r}^o r^o
在这里插入图片描述
在这里插入图片描述
最终与目标节点组合获得最终表示 r ~ o \widetilde{r}^o r o,最终的到用户正/负序列 P ~ o , N ~ o \widetilde{P}^o,\widetilde{N}^o P o,N o
在这里插入图片描述
进一步通过CA和DA进行融合。其中CA因为图网络中已经进行过邻接结点融合计算了,所以CA没有ATTN操作。最终也将四种id类序列表示进行融合
在这里插入图片描述

2.3 预估

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值