《Denoising Neural Network for News Recommendation with Positive and Negative Implicit Feedback》
1 解决问题
隐式反馈不一定代表用户真实兴趣,存在噪声
- 假阳:用户点击后立刻退出
- 假阴:推了多个兴趣方向,但实际只点了一个
2 模型结构
- 文本title特征走左边,id特征走右边图网络
- 每个item title特征经过ATTN进行融合得到一个vec
- 文本类特征和id类特征的序列融合原理基本相同,存在一定diff
2.1 文本类特征的正/负隐式反馈融合
对于文本类特征序列,主要由两部分构成:content-based aggregator (CA) 和 denoising aggregator (DA)。CA为序列内融合,借助ATTN强化同序列(正/负反馈序列)
T
~
\widetilde{T}
T
,最终融合
DA则通过两种序列的组合对用户目标(正/负)序列去噪:(以下正序列举例公式)
- 同序列内融合:对于
p
j
t
∈
P
t
p^t_j \in P^t
pjt∈Pt
- 异序列融合:
- 两种序列融合组合:
最终,得到了四种序列表示:
- CA产出的:正序列 p s t p^t_s pst、负序列 n s t n^t_s nst
- DA产出的:正序列
p
h
t
p^t_h
pht、负序列
n
h
t
n^t_h
nht
通过直接拼接正负序列和目标item得到 f t f^t ft,计算各个序列权重 β \beta β
2.2 id类特征融合
对于id类特征,构建邻接图,
(
r
i
,
r
j
)
(r_i,r_j)
(ri,rj)表示两个item都被某同一个用户点过
基于图中items的邻接结点
r
k
o
∈
N
(
r
o
)
r^o_k \in N(r^o)
rko∈N(ro),计算该节点
r
o
r^o
ro,其中m为多头attn参数。将多个attn进行concat获得表示
r
^
o
\hat{r}^o
r^o
最终与目标节点组合获得最终表示
r
~
o
\widetilde{r}^o
r
o,最终的到用户正/负序列
P
~
o
,
N
~
o
\widetilde{P}^o,\widetilde{N}^o
P
o,N
o。
进一步通过CA和DA进行融合。其中CA因为图网络中已经进行过邻接结点融合计算了,所以CA没有ATTN操作。最终也将四种id类序列表示进行融合