RecSys行为序列建模 - 数据增强的对比学习CL4SRec

Contrastive Learning for Sequential Recommendation

1 Intro

  1. 序列推荐很有用,但是很容易受限于数据稀疏
  2. 自监督学习很有用,但是不试用于推荐:缺乏大量原料i库 & 自监督序列预测任务基本就是序列推荐目标

2 主要框架

主要框架分为3块:

  1. 数据增广模块:同一个数据产生两份增广样本< s u a i , s u a j s^{a_i}_u, s^{a_j}_u suai,suaj>,彼此视为正样本;不同数据产生的视为负样本 s − s^- s
  2. 用户表示:适用所有用户序列建模方法
  3. 对比学习辅助函数:使用对比损失函数来区分两个表示是否来自相同的用户历史序列
    在这里插入图片描述
    在这里插入图片描述

2.1 数据增广方法

在这里插入图片描述

  1. crop:以 η \eta η概率保留某连续子序列( η = 1 \eta=1 η=1即原序列,=0序列为空)
  2. mask:以 γ \gamma γ概率mask掉随机item
  3. reorder:以 β \beta β概率shuffle某段连续子序列

2.2 用户表示

在这里插入图片描述
item和位置编码 p i p_i pi结合后,输入Trm block。Trm block由Multi-Head Attention (MH)和Position-wise Feed-Forward (PFFN) 组成
在这里插入图片描述
不断堆叠Trm block
在这里插入图片描述
最终
在这里插入图片描述

3 Expr

  1. 非个性化(红)是最差的;序列建模(蓝)比非序列建模(黄)更好;ATTN在序列建模中最有效;CL4SRec最优
    在这里插入图片描述
  2. 数据增广方法各有各的好,没有全优的 (每次只取一种增广方法实验)
    在这里插入图片描述
  3. 最终loss中 λ \lambda λ超过一定阈值后再增加就会导致模型效果下降
    在这里插入图片描述
  4. 消融数据增广方法和对比学习loss,都有增益( S A S R e c a u g SASRec_{aug} SASRecaug = SASRec + 增广方法,CL4SRec = S A S R e c a u g SASRec_{aug} SASRecaug + 对比学习loss)
    在这里插入图片描述
  5. 基于数据集中为好友的用户对,检查其表示vec是否相似。SASRec和CL4SRec平均相似度分别是0.5198和0.6100,CL4Rec相比SASRec产生了更好的用户向量表示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值