The impact of chatbots based on large language models on second language vocabulary acquisition
基本信息
博客贡献人
柴进
作者
Zhihui Zhang, Xiaomeng Huang
标签
大语言模型,对话机器人,第二语言习得,词汇学习
摘要
近年来,大语言模型(LLMs)已经在自动化和增强教育任务方面展示了巨大的潜力,能够有效地捕捉人类语言的复杂性和多样性。本文旨在探究基于大语言模型的对话机器人在第二语言词汇学习方面的影响,将52名外语学生分为两组,实验组使用基于LLMs的聊天机器人,对照组则不使用。两组学生在八周的时间里学习相同的目标单词,待结束后进行评估,评估方式包括系统观察与定量测试。
研究结果表明,使用基于LLMs的人工智能聊天机器人可以显著帮助学生在第二语言学习过程中获得接受性和生产性词汇知识。另外,本研究还得出,聊天机器人有助于长期保留生产性词汇,并促进附带词汇的学习。
问题定义
以往的研究表明,对话机器人能提供即时、实时的交互,增强了用户的整体学习体验。而这些研究往往集中于学习成果和性能改进上,缺少检验聊天机器人作为语言学习工具有效性的实证研究。当前随着大语言模型技术的发展,基于LLMs的对话机器人具有模仿人类语言复杂性的能力,以及提供个性化语言帮助的潜力,有期望弥合互动式教学和实际教学支持的差距。
因此,本文利用基于LLMs的聊天机器人来进行实证研究,探究其在提高语言能力和促进学生进行自我调节学习方面的功效和潜在优势。
整篇文章集中讨论的研究问题如下:
- 对话机器人在多大程度上增强了第二语言学习者的接受性词汇知识
- 对话机器人在多大程度上增强了第二语言学习者的生产性词汇知识
- 对话机器人如何促进第二语言学习者的附带词汇学习
相关知识
接受性词汇:指学习者能够理解和认识的词汇,但不一定会主动使用或表达
生产性词汇:指学习者