ndarray的数据类型

本文介绍了Numpy的dtype特性,它用于定义数组中数据的内存布局。可以通过astype方法进行数据类型的转换,如整数转浮点数,字符串转数字。Numpy支持多种数据类型,包括有符号和无符号整数、浮点数、复数、布尔值及字符串等。在转换过程中,如果遇到错误,如无法将字符串转换为特定浮点类型,将抛出ValueError。对于大型数据集,理解Numpy的数据类型对于内存管理和计算效率至关重要。
摘要由CSDN通过智能技术生成

数据类型,即dytpe,是一个特殊的对象,它包含了ndarray需要为某一种类型数据所申明的内存块信息(也称为元数据,即表示数据的数据):

import numpy as np

arr1 = np.array([1,2,3],dtype = np.float64)
arr2 = np.array([1,2,3],dtype = np.int32)

arr1.dtype
dtype('float64')

arr2.dtype
dtype('int32')

dtype是Numpy能够与其他系统数据灵活交互的原因。

你可以使用astype方法显式地转换数组的数据类型:

arr = np.array([1,2,3,4,5])

arr.dtype
dtype('int32')

float_arr = arr.astype(np.float64)

float_arr.dtype
dtype('float64')

在上面例子中,整数被换成了浮点数。如果我把浮点数转换成整数,则小数点后的部分将被消除:

arr = np.array([3.7,-1.2,-2,6,0.5,12.9,10.1])

arr
array([ 3.7, -1.2, -2. ,  6. ,  0.5, 12.9, 10.1])

arr.astype(np.int32)
array([ 3, -1, -2,  6,  0, 12, 10])

如果你有一个数组,里面的元素都是表达数字含义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

格陵Lan丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值