C++算法集锦:图论

最小生成树

牛客连接: 最小生成树
在这里插入图片描述

解法1
思路:kruskal算法+并查集

利用kruskal的思想,每次选择最短的路径,加入到候选集和中,从而最终连通整个图。
这里同时采用并查集的思想,每次将一条对一条候选路径进行选择的时候,判断两个端点是否拥有共同父亲,如果拥有则表明这两个点之间已经存在被加入候选集合中了,放弃这条边;如果没有拥有共同父亲,则将两个点连接,即指定一个点为另一个点的父亲,并且选择这条边加入连通图。最终,判断完所有的路径。
在这里插入图片描述

class Solution {
public:
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 返回最小的花费代价使得这n户人家连接起来
     * @param n int n户人家的村庄
     * @param m int m条路
     * @param cost intvector<vector<>> 一维3个参数,表示连接1个村庄到另外1个村庄的花费的代价
     * @return int
     */
    static bool comp(const vector<int >& x, const vector<int >& y){
        return x[2] < y[2];
    }
    int find_father(int &x, vector<int> &parents){
        return (parents[x] == x)?x:find_father(parents[x],parents);
    }    
    
    
    int miniSpanningTree(int n, int m, vector<vector<int> >& cost) {
        // write code here
        sort(cost.begin(),cost.end(),comp);
        int sum = 0;
        vector<int> parents(n+1);
        for(int i =0;i<=n;++i)         //建立并查集
            parents[i] = i;
        for(vector<int> i : cost){    //优先查找最路径
            int x = i[0];
            int y = i[1];
            int exp = i[2];
            x = find_father(x,parents);  //合并
            y = find_father(y,parents);
            if(x!=y){
                parents[x] = y;
                sum+=exp;
            }
        }
        return sum;
    }
};

解法2
思路:prim算法

在这里插入图片描述

#include <algorithm>
class Solution {
public:
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 返回最小的花费代价使得这n户人家连接起来
     * @param n int n户人家的村庄
     * @param m int m条路
     * @param cost intvector<vector<>> 一维3个参数,表示连接1个村庄到另外1个村庄的花费的代价
     * @return int
     */
    static bool comp(const vector<int> &x, const vector<int> &y){
        return x[2]<y[2];
    }
    int miniSpanningTree(int n, int m, vector<vector<int> >& cost) {
        // write code here
        unordered_set<int> points;      //纳入确定集合
        sort(cost.begin(),cost.end(),comp);   //路径排序 保证优先查找到每个端点最短路径
        points.insert(cost[0][0]);			//最短路径两个端点先纳入集合
        points.insert(cost[0][1]);
        int res = cost[0][2];			
        cost.erase(cost.begin());
        while(true){                    //递归向外拓展最短路径
            if(points.size()==n)
                break;
            for(int i =0; i<cost.size(); ++i){   
            	//一个端点在集合内一个端点不在集合内
                if((points.find(cost[i][0])!=points.end() && points.find(cost[i][1])==points.end()) || 
                   (points.find(cost[i][0])==points.end() && points.find(cost[i][1])!=points.end())){
                    res+=cost[i][2];
                    points.insert(cost[i][0]);
                    points.insert(cost[i][1]);
                    cost.erase(cost.begin()+i);
                    break;
                }

            }
        }
        return res;
    }
};

单源最短路

牛客链接:NC158 单源最短路
在这里插入图片描述
解法1:Dijkstra算法

每次确定一个最短距离,并且根据该最短距离,来更新能够从该点到达其他所有点的最短距离。

class Solution {
public:
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 
     * @param n int 顶点数
     * @param m int 边数
     * @param graph intvector<vector<>> 一维3个数据,表示顶点到另外一个顶点的边长度是多少​
     * @return int
     */
    int dijkstra(vector<vector<int>> &matrix, int n){   
        vector<bool> vis(n+1, false);  //判断是否确认过最短距离
        vector<int> dis(n+1,INT_MAX);    //用于迭代更新最短距离。
        dis[1] = 0;
        for(int i=1; i<=n;++i){
            int temp = -1;
            for(int j = 1;j<=n;++j){
                if(!vis[j] && (temp == -1 or dis[j] < dis[temp]))
                    temp = j;
            }
            vis[temp] = true;

            for(int j = 1;j<=n;++j){
                if(matrix[temp][j] != INT_MAX && dis[temp] != INT_MAX)
                    dis[j] = min(dis[j], dis[temp] + matrix[temp][j]);
            }
        }
        return dis[n];
    }
    
    int findShortestPath(int n, int m, vector<vector<int> >& graph) {
        // write code here
        vector<vector<int>> matrix(n+1,vector<int>(n+1,INT_MAX));
        for(int i=1;i<=n;++i){
            matrix[i][i] = 0;
        }
        for(int i =0;i<graph.size();++i){
            matrix[graph[i][0]][graph[i][1]] = min(matrix[graph[i][0]][graph[i][1]],graph[i][2]);
        }
        
        int ans = dijkstra(matrix,n);
        
        return ans==INT_MAX?-1:ans;
    }
};

二分图

力扣连接:剑指 Offer II 106.
在这里插入图片描述
解法1:并查集

class Solution {
public:
    map<int,int> mp;
    int find_f(int a){  //用于分派,寻找到最终的祖先
        return mp[a]==a? a: find_f(mp[a]);
    }

    void union_nodes(int a, int b){  //合并两个节点,让其处于共同祖先
        mp[find_f(a)] = find_f(b);
    }


    bool isBipartite(vector<vector<int>>& graph) {
        for(int i = 0;i<graph.size();++i){  //集合初始化
            mp[i] = i;
        }
        for(int node = 0; node < graph.size(); ++node){
            for(int i=0; i<graph[node].size(); ++i){
            	//如果有相邻节点的祖先和当前节点的祖先相同,则这两个是曾经被分配到同一组,则失败。
                if(find_f(node) == find_f(graph[node][i])) return false;
                union_nodes(graph[node][0],graph[node][i]); //将当前节点相邻节点和进行联合
            }
        }
        return true;
    }
};

解法2:dfs染色

对每个节点开始染色0,并沿着他的相邻节点依次染色为1,并对1的结点依次染色为0;过程中如果发现存在一个结点已经被染色,且他需要染的色和已经染的色不同,则错误。

class Solution {
public:
    bool setcolor(vector<vector<int>>& graph, vector<int>& color,int node, int color_need){
        if(color[node] != -1)    //只要被染过,就可以进行判断
            return color[node] == color_need;

        color[node] = color_need;
        for(auto i: graph[node]){
            if(!setcolor(graph,color,i,1-color_need)) //递归染色 1-color_need表示 0和1相互染
                return false;
        }
        return true;
    }

    bool isBipartite(vector<vector<int>>& graph) {
        vector<int> color(graph.size(),-1);
        for(int i=0;i<graph.size();++i){
            if(color[i] == -1){  //未染色的结点,加入染色并递归判断
                if(!setcolor(graph,color,i,0))
                    return false;
            }
        }
        return true;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值