最小生成树
牛客连接: 最小生成树
解法1
思路:kruskal算法+并查集
利用kruskal的思想,每次选择最短的路径,加入到候选集和中,从而最终连通整个图。
这里同时采用并查集的思想,每次将一条对一条候选路径进行选择的时候,判断两个端点是否拥有共同父亲,如果拥有则表明这两个点之间已经存在被加入候选集合中了,放弃这条边;如果没有拥有共同父亲,则将两个点连接,即指定一个点为另一个点的父亲,并且选择这条边加入连通图。最终,判断完所有的路径。
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
* 返回最小的花费代价使得这n户人家连接起来
* @param n int n户人家的村庄
* @param m int m条路
* @param cost intvector<vector<>> 一维3个参数,表示连接1个村庄到另外1个村庄的花费的代价
* @return int
*/
static bool comp(const vector<int >& x, const vector<int >& y){
return x[2] < y[2];
}
int find_father(int &x, vector<int> &parents){
return (parents[x] == x)?x:find_father(parents[x],parents);
}
int miniSpanningTree(int n, int m, vector<vector<int> >& cost) {
// write code here
sort(cost.begin(),cost.end(),comp);
int sum = 0;
vector<int> parents(n+1);
for(int i =0;i<=n;++i) //建立并查集
parents[i] = i;
for(vector<int> i : cost){ //优先查找最路径
int x = i[0];
int y = i[1];
int exp = i[2];
x = find_father(x,parents); //合并
y = find_father(y,parents);
if(x!=y){
parents[x] = y;
sum+=exp;
}
}
return sum;
}
};
解法2
思路:prim算法
#include <algorithm>
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
* 返回最小的花费代价使得这n户人家连接起来
* @param n int n户人家的村庄
* @param m int m条路
* @param cost intvector<vector<>> 一维3个参数,表示连接1个村庄到另外1个村庄的花费的代价
* @return int
*/
static bool comp(const vector<int> &x, const vector<int> &y){
return x[2]<y[2];
}
int miniSpanningTree(int n, int m, vector<vector<int> >& cost) {
// write code here
unordered_set<int> points; //纳入确定集合
sort(cost.begin(),cost.end(),comp); //路径排序 保证优先查找到每个端点最短路径
points.insert(cost[0][0]); //最短路径两个端点先纳入集合
points.insert(cost[0][1]);
int res = cost[0][2];
cost.erase(cost.begin());
while(true){ //递归向外拓展最短路径
if(points.size()==n)
break;
for(int i =0; i<cost.size(); ++i){
//一个端点在集合内一个端点不在集合内
if((points.find(cost[i][0])!=points.end() && points.find(cost[i][1])==points.end()) ||
(points.find(cost[i][0])==points.end() && points.find(cost[i][1])!=points.end())){
res+=cost[i][2];
points.insert(cost[i][0]);
points.insert(cost[i][1]);
cost.erase(cost.begin()+i);
break;
}
}
}
return res;
}
};
单源最短路
牛客链接:NC158 单源最短路
解法1:Dijkstra算法
每次确定一个最短距离,并且根据该最短距离,来更新能够从该点到达其他所有点的最短距离。
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param n int 顶点数
* @param m int 边数
* @param graph intvector<vector<>> 一维3个数据,表示顶点到另外一个顶点的边长度是多少
* @return int
*/
int dijkstra(vector<vector<int>> &matrix, int n){
vector<bool> vis(n+1, false); //判断是否确认过最短距离
vector<int> dis(n+1,INT_MAX); //用于迭代更新最短距离。
dis[1] = 0;
for(int i=1; i<=n;++i){
int temp = -1;
for(int j = 1;j<=n;++j){
if(!vis[j] && (temp == -1 or dis[j] < dis[temp]))
temp = j;
}
vis[temp] = true;
for(int j = 1;j<=n;++j){
if(matrix[temp][j] != INT_MAX && dis[temp] != INT_MAX)
dis[j] = min(dis[j], dis[temp] + matrix[temp][j]);
}
}
return dis[n];
}
int findShortestPath(int n, int m, vector<vector<int> >& graph) {
// write code here
vector<vector<int>> matrix(n+1,vector<int>(n+1,INT_MAX));
for(int i=1;i<=n;++i){
matrix[i][i] = 0;
}
for(int i =0;i<graph.size();++i){
matrix[graph[i][0]][graph[i][1]] = min(matrix[graph[i][0]][graph[i][1]],graph[i][2]);
}
int ans = dijkstra(matrix,n);
return ans==INT_MAX?-1:ans;
}
};
二分图
力扣连接:剑指 Offer II 106.
解法1:并查集
class Solution {
public:
map<int,int> mp;
int find_f(int a){ //用于分派,寻找到最终的祖先
return mp[a]==a? a: find_f(mp[a]);
}
void union_nodes(int a, int b){ //合并两个节点,让其处于共同祖先
mp[find_f(a)] = find_f(b);
}
bool isBipartite(vector<vector<int>>& graph) {
for(int i = 0;i<graph.size();++i){ //集合初始化
mp[i] = i;
}
for(int node = 0; node < graph.size(); ++node){
for(int i=0; i<graph[node].size(); ++i){
//如果有相邻节点的祖先和当前节点的祖先相同,则这两个是曾经被分配到同一组,则失败。
if(find_f(node) == find_f(graph[node][i])) return false;
union_nodes(graph[node][0],graph[node][i]); //将当前节点相邻节点和进行联合
}
}
return true;
}
};
解法2:dfs染色
对每个节点开始染色0,并沿着他的相邻节点依次染色为1,并对1的结点依次染色为0;过程中如果发现存在一个结点已经被染色,且他需要染的色和已经染的色不同,则错误。
class Solution {
public:
bool setcolor(vector<vector<int>>& graph, vector<int>& color,int node, int color_need){
if(color[node] != -1) //只要被染过,就可以进行判断
return color[node] == color_need;
color[node] = color_need;
for(auto i: graph[node]){
if(!setcolor(graph,color,i,1-color_need)) //递归染色 1-color_need表示 0和1相互染
return false;
}
return true;
}
bool isBipartite(vector<vector<int>>& graph) {
vector<int> color(graph.size(),-1);
for(int i=0;i<graph.size();++i){
if(color[i] == -1){ //未染色的结点,加入染色并递归判断
if(!setcolor(graph,color,i,0))
return false;
}
}
return true;
}
};