C++语言试题,认证时间:2021 年 9 月 19 日 09:30~11:30
考生注意事项:
l
试题纸共有
16
页,答题纸共有
1
页,满分
100
分。请在答题纸上作答,写在试题纸上的
一律无效。
l
不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍资料。
一、单项选择题(共
15
题,每题
2
分,共计
30
分;每题有且仅有一个正确选项)
1.
在
Linux
系统终端中,用于列出当前目录下所含的文件和子目录的命令为( )。
A. ls
B. cd
C. cp
D. all
解析:A,常识问题
2.
二进制数
00101010
2
和
00010110
2
的和为(
)。
A. 00111100
2
B. 01000000
2
C. 00111100
2
D. 01000010
2
解析: 二进制加法, 1+1=10
3.
在程序运行过程中,如果递归调用的层数过多,可能会由于(
)引发错误。
A.
系统分配的栈空间溢出
B.
系统分配的队列空间溢出
C.
系统分配的链表空间溢出
D.
系统分配的堆空间溢出
解析:递归栈的空间是分配在栈空间上的
4.
以下排序方法中,(
)是不稳定的。
A.
插入排序
B.
冒泡排序
C.
堆排序
D.
归并排序
解析:C堆排序,快排都不稳定
排序稳定:指相同大小的元素在排序前后是否还会保持排序前的相对顺序
5.
以比较为基本运算,对于
2n
个数,同时找到最大值和最小值,最坏情况下需要的最小的比
较次数为( C
)。
A. 4n-2
B. 3n+1
C. 3n-2
D. 2n+1
解析:原题,先将2n个数分成n组,每组2个,n组每组内比较,把原数组分成较大和较小的两组,
需要n次比较,较大值只可能出现在较大的那组内,需要n-1次比较找出最大值
同理最小值,所以n+2(n-1)=3n-2;
6.
现有一个地址区间为
0
~
10
的哈希表,对于出现冲突情况,会往后找第一个空的地址存储
(到
10
冲突了就从
0
开始往后),现在要依次存储(
0
,
1, 2
,
3
,
4
,
5
,
6
,
7
),哈希函
数为
h(x)=x
2
mod 11
。请问
7
存储在哈希表哪个地址中( C
)。
A. 5
B. 6
C. 7
D. 8
解析:根据题意直接模拟,每个数依次被放在0,1,4,9,5,6,3,7
7. G
是一个非连通简单无向图(没有自环和重边),共有
36
条边,则该图至少有(C
)个点。
A. 8
B. 9
C. 10
D. 11
解析:课件原题,无向完全图边=n*(n-1)/2 ,n为顶点个数, 得出9个点的36边,题目要求是不连通,
所以至少需要10个点
8.
令根结点的高度为
1
,则一棵含有
2021
个结点的二叉树的高度至少为(B )。
A. 10
B. 11
C. 12
D. 2021
解析:课件原题,n层的二叉树最多2^n-1个节点,2^10=1024,所以11层
9.
前序遍历和中序遍历相同的二叉树为且仅为(D
)。
A.
只有
1
个点的二叉树
B.
根结点没有左子树的二叉树
C.
非叶子结点只有左子树的二叉树
D.
非叶子结点只有右子树的二叉树
解析:课件原题,前序:根左右,中序遍历:左根右,一样的话,左子树不存在即可
10.
定义一种字符串操作为交换相邻两个字符。将“
DACFEB
”变为
“ABCDEF”
最少需要(A
)
次上述操作。
A. 7
B. 8
C. 9
D. 6
解析:直接进行演算可得
11.
有如下递归代码
solve(t, n):
if t=1 return 1
else return 5*solve(t-1,n) mod n
则
solve(23,23)
的结果为( A)。
A. 1
B. 7
C. 12
D. 22
解析:求2^22%23的值,费马小定理得出1
12.
斐波那契数列的定义为:
F
1
=1
,
F
2
=1
,
F
n
=F
n-1
+F
n-2
(n>=3)
。现在用如下程序来计算斐波
那契数列的第
n
项,其时间复杂度为(C
)。
F(n):
if n<=2 return 1
else return F(n-1) + F(n-2)
A. O(
n
)
B. O(n^2
)
C. O(
2^n
)
D. O(
n log n
)
// 递归的复杂度
13.
有
8
个苹果从左到右排成一排,你要从中挑选至少一个苹果,并且不能同时挑选相邻的两
个苹果,一共有( c
)种方案。
A. 36
B. 48
C. 54
D. 64
解析:一个苹果8个,2个苹果21, 3个苹果 .....地推法
14.
设一个三位数
n=---- abc
,
a, b, c
均为
1
~
9
之间的整数,若以
a
、
b
、
c
作为三角形的三
条边可以构成等腰三角形(包括等边),则这样的
n
有( C
)个。
A. 81
B. 120
C. 165
D. 216
解析:考虑a=b=c的情况,只有9种
考虑a=b且a!=c a=2时c=1,3,a=3时c=1,2,3,4,...
此时(a,c)的选择有2+4+6+8*5=52,而c的位置可以换,共有52*3=156再加+9=165
15.
有如下的有向图,节点为
A, B, … , J,
其中每条边的长度都标在图中。则节点
A
到节
点
J
的最短路径长度为(
)。

A. 16
B. 19
C. 20
D. 22
解析:从左到右计算19
二、阅读程序(程序输入不超过数组或字符串定义的范围;判断题正确填
√
,错误填
×
;除特
殊说明外,判断题
1.5
分,选择题
3
分,共计
40
分)
(1)
01 #include <iostream>
02 #include <cmath>
03 using namespace std;
04
05 const double r = acos(0.5);
06
07 int a1, b1, c1, d1;
08 int a2, b2, c2, d2;
09
10 inline int sq(const int x) { return x * x; }
11 inline int cu(const int x) { return x * x * x; }
12
13 int main()
14 {
15 cout.flags(ios::fixed);
16 cout.precision(4);
17
18 cin >> a1 >> b1 >> c1 >> d1;
19 cin >> a2 >> b2 >> c2 >> d2;
20
21 int t = sq(a1 - a2) + sq(b1 - b2) + sq(c1 - c2);
22
23 if (t <= sq(d2 - d1)) cout << cu(min(d1, d2)) * r * 4;
24 else if (t >= sq(d2 + d1)) cout << 0;
25 else {
26 double x = d1 - (sq(d1) - sq(d2) + t) / sqrt(t) / 2;
27 double y = d2 - (sq(d2) - sq(d1) + t) / sqrt(t) / 2;
28 cout << (x * x * (3 * d1 - x) + y * y * (3 * d2 - y)) * r;
29 }
30 cout << endl;
31 return 0;
32 }
假设输入的所有数的绝对值都不超过
1000
,完成下面的判断题和单选题:
l
判断题
16.
将第
21
行中
t
的类型声明从
int
改为
double
,
不会影响程序运行的结果。(√
)
解析: 无论t是整型还是浮点型,之后计算时都转换double了
17.
将第
26
、
27
行中的“
/ sqrt(t) / 2
”替换为“
/ 2 / sqrt(t)
”,
不会
影响程
序运行的结果。(
错 )
//解析:错 先除以2就是整除
18.
将第
28
行中的“
x * x
”改成“
sq(x)
”、“
y * y
”改成“
sq(y)
” ,
不会
影响程
序运行的结果。(错
)
解析:错,sq内部是整型,改成sq()会先将参数转换成整型再平方
19.
(
2
分)
当输入为“
0 0 0 1 1 0 0 1
”时,输出为“
1.3090
”。(
)
// 对,直接计算
20.
当输入为“
1 1 1 1 1 1 1 2
”时,输出为(D
)。
A. “
3.1416
”
B. “
6.2832
”
C. “4.7124
”
D. “
4.1888
”
// 第二个球包含了第一个球,答案是第一个球的体积
21.
(
2.5
分)
这段代码的含义为(C
)。
A. 求圆的面积并
B. 求球的体积并
C. 求球的体积交
D. 求椭球的体积并
//不可能是并,并不可能输出0
其次输入8个数,可以排除输入的是一个圆
(2)
01 #include <algorithm>
02 #include <iostream>
03 using namespace std;
04
05 int n, a[1005];
06
07 struct Node
08 {
09 int h, j, m, w;
10
11 Node(const int _h, const int _j, const int _m, const int _w):
12 h(_h), j(_j), m(_m), w(_w)
13 { }
14
15 Node operator+(const Node &o) const
16 {
17 return Node(
18 max(h, w + o.h),
19 max(max(j, o.j), m + o.h),
20 max(m + o.w, o.m),
21 w + o.w);
22 }
23 };
24
25 Node solve1(int h, int m)
26 {
27 if (h > m)
28 return Node(-1, -1, -1, -1);
29 if (h == m)
30 return Node(max(a[h], 0), max(a[h], 0), max(a[h], 0), a[h]);
31 int j = (h + m) >> 1;
32 return solve1(h, j) + solve1(j + 1, m);
33 }
34
35 int solve2(int h, int m)
36 {
37 if (h > m)
38 return -1;
39 if (h == m)
40 return max(a[h], 0);
41 int j = (h + m) >> 1;
42 int wh = 0, wm = 0;
43 int wht = 0, wmt = 0;
44 for (int i = j; i >= h; i--) {
45 wht += a[i];
46 wh = max(wh, wht);
47 }
48 for (int i = j + 1; i <= m; i++) {
49 wmt += a[i];
50 wm = max(wm, wmt);
51 }
52 return max(max(solve2(h, j), solve2(j + 1, m)), wh + wm);
53 }
54
55 int main()
56 {
57 cin >> n;
58 for (int i = 1; i <= n; i++) cin >> a[i];
59 cout << solve1(1, n).j << endl;
60 cout << solve2(1, n) << endl;
61 return 0;
62 }
假设输入的所有数的绝对值都不超过
1000
,完成下面的判断题和单选题:
l
判断题
22.
程序
总是
会正常执行并输出两行两个相等的数。(
)
// 对 , 求最大子段和
23.
第
28
行与第
38
行分别有可能执行两次及以上。(
)
// 错 ,假设一开始h<=m,这两行不会被执行,否则执行一次
24.
当输入为“
5 -10 11 -9 5 -7
”时,输出的第二行为“
7
”。(
)
// 错 求最大和
单选题
25.solve1(1, n)
的时间复杂度为( B
)。
A.
Θ(log n)
B.
Θ(n)
C.
Θ(n log n)
D. Θ(n^2)
// T(n)=O(n)+2T(n/2) O(n)=T(n)
26.solve2(1, n)
的时间复杂度为(c
)。
A.
Θ(log n)
B.
Θ(n)
C.
Θ(n log n)
D. Θ(n^2)
// T(n)=O(n)+2T(n/2) 得出T(n)=O(nlogn)
27.
当输入为“
10 -3 2 10 0 -8 9 -4 -5 9 4
”时,输出的第一行为(B
)。
A. “
13
”
B. “
17
”
C. “
24
”
D. “
12
”
//所有数的和
(3)
01 #include <iostream>
02 #include <string>
03 using namespace std;
04
05 char base[64];
06 char table[256];
07
08 void init()
09 {
10 for (int i = 0; i < 26; i++) base[i] = 'A' + i;
11 for (int i = 0; i < 26; i++) base[26 + i] = 'a' + i;
12 for (int i = 0; i < 10; i++) base[52 + i] = '0' + i;
13 base[62] = '+', base[63] = '/';
14
15 for (int i = 0; i < 256; i++) table[i] = 0xff;
16 for (int i = 0; i < 64; i++) table[base[i]] = i;
17 table['='] = 0;
18 }
19
20 string encode(string str)
21 {
22 string ret;
23 int i;
24 for (i = 0; i + 3 <= str.size(); i += 3) {
25 ret += base[str[i] >> 2];
26 ret += base[(str[i] & 0x03) << 4 | str[i + 1] >> 4];
27 ret += base[(str[i + 1] & 0x0f) << 2 | str[i + 2] >> 6];
28 ret += base[str[i + 2] & 0x3f];
29 }
30 if (i < str.size()) {
31 ret += base[str[i] >> 2];
32 if (i + 1 == str.size()) {
33 ret += base[(str[i] & 0x03) << 4];
34 ret += "==";
35 }
36 else {
37 ret += base[(str[i] & 0x03) << 4 | str[i + 1] >> 4];
38 ret += base[(str[i + 1] & 0x0f) << 2];
39 ret += "=";
40 }
41 }
42 return ret;
43 }
44
45 string decode(string str)
46 {
47 string ret;
48 int i;
49 for (i = 0; i < str.size(); i += 4) {
50 ret += table[str[i]] << 2 | table[str[i + 1]] >> 4;
51 if (str[i + 2] != '=')
52 ret += (table[str[i + 1]] & 0x0f) << 4 | table[str[i +
2]] >> 2;
53 if (str[i + 3] != '=')
54 ret += table[str[i + 2]] << 6 | table[str[i + 3]];
55 }
56 return ret;
57 }
58
59 int main()
60 {
61 init();
62 cout << int(table[0]) << endl;
63
64 int opt;
65 string str;
66 cin >> opt >> str;
67 cout << (opt ? decode(str) : encode(str)) << endl;
68 return 0;
69 }
假设输入总是合法的(一个整数和一个不含空白字符的字符串,用空格隔开),完成下面
的判断题和单选题:
l
判断题
28.
程序总是先输出
一行
一个整数,再输出
一行
一个字符串。(
)
//错,不一定
29.
对于任意不含空白字符的字符串
str1
,先执行程序输入“
0 str1
”,得到输出的第
二行记为
str2
;再执行程序输入“
1 str2
”,输出的第二行必为
str1
。(
)
//对, 两个过程是加密和解密,互为逆序过程
30.
当输入为“
1 SGVsbG93b3JsZA==
”时,输出的第二行为“
HelloWorld
”。(
)
//错,爆算是
单选题
31.
设输入字符串长度为
n
,
encode
函数的时间复杂度为(B
)。
A.
Θ,√n.
B.
Θ(n)
C.
Θ(n log n)
D.
Θ(n^2
)
32.
输出的第一行为( D
)。
A. “
0xff
”
B. “
255
”
C. “
0xFF
”
D. “
-1
”
33.
(
4
分)
当输入为“
0 CSP2021csp
”时,输出的第二行为( D
)。
A.
“
Q1NQMjAyMWNzcAv=
”
B.
“
Q1NQMjAyMGNzcA==
”
C.
“
Q1NQMjAyMGNzcAv=
”
D.
“
Q1NQMjAyMWNzcA==
”
三、 完善程序(单选题,每小题
3
分,共计
30
分)
(1)
(魔法数字)
小
H
的魔法数字是
4
。给定
?
,他希望用若干个
4
进行若干次加
法、减法和整除运算得到
?
。但由于小
H
计算能力有限,计算过程中只能出现不超过
? = 10000
的正整数。求至少可能用到多少个
4
。
例如,当
? = 2
时,有
2 = (4 + 4)/4
,用到了
3
个
4
,是最优方案。
试补全程序。
01 #include <iostream>
02 #include <cstdlib>
03 #include <climits>
04
05 using namespace std;
06
07 const int M = 10000;
08 bool Vis[M + 1];
09 int F[M + 1];
10
11 void update(int &x, int y) {
12 if (y < x)
13 x = y;
14 }
15
16 int main() {
17 int n;
18 cin >> n;
19 for (int i = 0; i <= M; i++)
20 F[i] = INT_MAX;
21
①
;
22 int r = 0;
23 while (
②
) {
24 r++;
25 int x = 0;
26 for (int i = 1; i <= M; i++)
27 if (
③
)
28 x = i;
29 Vis[x] = 1;
30 for (int i = 1; i <= M; i++)
31 if (
④
) {
32 int t = F[i] + F[x];
33 if (i + x <= M)
34 update(F[i + x], t);
35 if (i != x)
36 update(F[abs(i - x)], t);
37 if (i % x == 0)
38 update(F[i / x], t);
39 if (x % i == 0)
40 update(F[x / i], t);
41 }
42 }
43 cout << F[n] << endl;
44 return 0;
45 }
34.
①处应填( D)
A.
F[4] = 0
B.
F[1] = 4
C.
F[1] = 2
D.
F[4] = 1
35.
②处应填(A )
A.
!Vis[n]
B.
r < n
C.
F[M] == INT_MAX
D.
F[n] == INT_MAX
36.
③处应填( D)
A.
F[i] == r
B.
!Vis[i] && F[i] == r
C.
F[i] < F[x]
D.
!Vis[i] && F[i] < F[x]
37.
④处应填(C )
A.
F[i] < F[x]
B.
F[i] <= r
C.
Vis[i]
D.
i <= x
(2)
(
RMQ
区间最值问题)
给定序列
?
#
, … , ?
"$%
,和
?
次询问,每次询问给定
?, ?
,求
max {?
&
, … , ?
'
}
。
为了解决该问题,有一个算法叫
the Method of Four Russians
,其时间复杂度为
?(? + ?)
,步骤如下:
•
建立
Cartesian
(笛卡尔)树,将问题转化为树上的
LCA
(最近公共祖先)问题。
•
对于
LCA
问题,可以考虑其
Euler
序(即按照
DFS
过程,经过所有点,环游回根
的序列),即求
Euler
序列上两点间
一个新的
RMQ
问题。
•
注意新的问题为
±1
RMQ
,即相邻两点的深度差一定为
1
。
下面解决这个
±1
RMQ
问题,“序列”指
Euler
序列:
•
设
?
为
Euler
序列长度。取
? = G
()* !
!
+
H
。将序列每
?
个分为一大块, 使用
ST
表(倍增表)处理大块间的
RMQ
问题,复杂度
? J
+
,
log ?K = ?(?)
。
•
(重点)
对于一个块内的
RMQ
问题,也需要
?(1)
的算法。由于差分数组
2
,$%
种,可以预处理出所有情况下的最值位置,预处理复杂度
?(?2
,
)
,不超过
?(?)
。
•
最终,对于一个查询,可以转化为中间整的大块的
RMQ
问题,以及两端块内的
RMQ
问题。
试补全程序。
001 #include <iostream>
002 #include <cmath>
003
004 using namespace std;
005
006 const int MAXN = 100000, MAXT = MAXN << 1;
007 const int MAXL = 18, MAXB = 9, MAXC = MAXT / MAXB;
008
009 struct node {
010 int val;
011 int dep, dfn, end;
012 node *son[2]; // son[0], son[1]
分别表示左右儿子
013 } T[MAXN];
014
015 int n, t, b, c, Log2[MAXC + 1];
016 int Pos[(1 << (MAXB - 1)) + 5], Dif[MAXC + 1];
017 node *root, *A[MAXT], *Min[MAXL][MAXC];
018
019 void build() { //
建立
Cartesian
树
020 static node *S[MAXN + 1];
021 int top = 0;
022 for (int i = 0; i < n; i++) {
023 node *p = &T[i];
024 while (top && S[top]->val < p->val)
025
①
;
026 if (top)
027
②
;
028 S[++top] = p;
029 }
030 root = S[1];
031 }
032
033 void DFS(node *p) { //
构建
Euler
序列
034 A[p->dfn = t++] = p;
035 for (int i = 0; i < 2; i++)
036 if (p->son[i]) {
037 p->son[i]->dep = p->dep + 1;
038 DFS(p->son[i]);
039 A[t++] = p;
040 }
041 p->end = t - 1;
042 }
043
044 node *min(node *x, node *y) {
045 return
③
? x : y;
046 }
047
048 void ST_init() {
049 b = (int)(ceil(log2(t) / 2));
050 c = t / b;
051 Log2[1] = 0;
052 for (int i = 2; i <= c; i++)
053 Log2[i] = Log2[i >> 1] + 1;
054 for (int i = 0; i < c; i++) {
055 Min[0][i] = A[i * b];
056 for (int j = 1; j < b; j++)
057 Min[0][i] = min(Min[0][i], A[i * b + j]);
058 }
059 for (int i = 1, l = 2; l <= c; i++, l <<= 1)
060 for (int j = 0; j + l <= c; j++)
061 Min[i][j] = min(Min[i - 1][j], Min[i - 1][j + (l >>
1)]);
062 }
063
064 void small_init() { //
块内预处理
065 for (int i = 0; i <= c; i++)
066 for (int j = 1; j < b && i * b + j < t; j++)
067 if (
④
)
068 Dif[i] |= 1 << (j - 1);
069 for (int S = 0; S < (1 << (b - 1)); S++) {
070 int mx = 0, v = 0;
071 for (int i = 1; i < b; i++) {
072
⑤
;
073 if (v < mx) {
074 mx = v;
075 Pos[S] = i;
076 }
077 }
078 }
079 }
080
081 node *ST_query(int l, int r) {
082 int g = Log2[r - l + 1];
083 return min(Min[g][l], Min[g][r - (1 << g) + 1]);
084 }
085
086 node *small_query(int l, int r) { //
块内查询
087 int p = l / b;
088 int S =
⑥
;
089 return A[l + Pos[S]];
090 }
091
092 node *query(int l, int r) {
093 if (l > r)
094 return query(r, l);
095 int pl = l / b, pr = r / b;
096 if (pl == pr) {
097 return small_query(l, r);
098 } else {
099 node *s = min(small_query(l, pl * b + b - 1),
small_query(pr * b, r));
100 if (pl + 1 <= pr - 1)
101 s = min(s, ST_query(pl + 1, pr - 1));
102 return s;
103 }
104 }
105
106 int main() {
107 int m;
108 cin >> n >> m;
109 for (int i = 0; i < n; i++)
110 cin >> T[i].val;
111 build();
112 DFS(root);
113 ST_init();
114 small_init();
115 while (m--) {
116 int l, r;
117 cin >> l >> r;
118 cout << query(T[l].dfn, T[r].dfn)->val << endl;
119 }
120 return 0;
121 }
38.
①处应填(A )
A.
p->son[0] = S[top--]
B.
p->son[1] = S[top--]
C.
S[top--]->son[0] = p
D.
S[top--]->son[1] = p
39.
②处应填( D)
A.
p->son[0] = S[top]
B.
p->son[1] = S[top]
C.
S[top]->son[0] = p
D.
S[top]->son[1] = p
40.
③处应填(A )
A.
x->dep < y->dep
B.
x < y
C.
x->dep > y->dep
D.
x->val < y->val
41.
④处应填(D )
A.
A[i * b + j - 1] == A[i * b + j]->son[0]
B.
A[i * b + j]->val < A[i * b + j - 1]->val
C.
A[i * b + j] == A[i * b + j - 1]->son[1]
D.
A[i * b + j]->dep < A[i * b + j - 1]->dep
42.
⑤处应填(D )
A.
v += (S >> i & 1) ? -1 : 1
B.
v += (S >> i & 1) ? 1 : -1
C.
v += (S >> (i - 1) & 1) ? 1 : -1
D.
v += (S >> (i - 1) & 1) ? -1 : 1
43.
⑥处应填( C)
A.
(Dif[p] >> (r - p * b)) & ((1 << (r - l)) - 1)
B.
Dif[p]
C.
(Dif[p] >> (l - p * b)) & ((1 << (r - l)) - 1)
D.
(Dif[p] >> ((p + 1) * b - r)) & ((1 << (r - l + 1)) - 1)