自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 收藏
  • 关注

原创 Python笔记之牛顿迭代法求a的平方根

用迭代法求a的平方根

2022-11-05 14:13:03 2086 1

原创 Blending集成学习算法

1.Blending流程图下面我们来详细讨论下这个Blending集成学习方式:将数据划分为训练集和测试集(test_set),其中训练集需要再次划分为训练集(train_set)和验证集(val_set);创建第一层的多个模型,这些模型可以使同质的也可以是异质的;使用train_set训练步骤2中的多个模型,然后用训练好的模型预测val_set和test_set得到val_predict, test_predict1;创建第二层的模型,使用val_predict作为训练集训练第二层的模型;

2021-05-11 21:36:21 369

原创 基于mindspore1.2.0的resnet50实践

准备数据集:首先下载数据集wget http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz然后解压数据集tar -zxvf cifar-10-binary.tar.gz下载代码并简单修改训练脚本:在MindSpore的docs仓下载代码https://gitee.com/mindspore/docs/tree/r1.2/tutorials/tutorial_code/resnet修改训练设备device_target="CPU"

2021-05-07 09:26:38 312

原创 XGBoost算法分析与案例调参实例

kjnjnklm

2021-04-26 22:36:36 149

原创 Docker综合实践

上传镜像到Docker Hub注册登录 hub.docker.com点击Repositories→Create Repository,然后填写仓库名称,点击Create。在本地命令行登录docker login复制下图右边两行命令到本地命令行修改本地仓库名docker tag local-image:tagname new-repo:tagnamepush!docker push new-repo:tagname拉取镜像docker pull ...

2021-04-23 22:14:26 98

原创 向前分步算法与梯度提升决策树

在Adaboost算法中,最终的目的是构建弱分类器的线性组合:$f(x)=\sum_{t=1}^{T} \alpha_{t} h_t(x)$得到最终的学习器。于是我们来看一下加法模型:$f(x)=\sum_{i=m}^{M} \beta_{m}b(x;\gamma_m)$$b(x;\gamma_{m})$ 是基函数,$\beta_{m}$ 是基函数的系数,$\gamma_{m}$为基函数的参数。显然Adaboost是一个加法模型在给定训练数据及损失函数 $L(y, f(x))$ 时,

2021-04-23 22:13:56 195

原创 Docker-Compose

Docker-Compose我们使用 Docker 的时候,定义 Dockerfile 文件,然后使用 docker build、docker run 等命令操作容器。然而微服务架构的应用系统一般包含若干个微服务,每个微服务一般都会部署多个实例,如果每个微服务都要手动启停,那么效率之低,维护量之大可想而知。那有没有一种方式能让我们的项目快速启动呢?然而使用 Docker Compose 可以轻松、高效的管理容器,它是一个用于定义和运行多容器 Docker 的应用程序工具。Docker Compose

2021-04-21 22:31:06 132

原创 Boosting的思路与Adaboost算法

Boosting的思路与Adaboost算法Boosting的思路:在PAC学习的框架下,强可学习和弱可学习是等价的,即一个概念是强可学习的充分必要条件是这个概念是弱可学习的。那么问题来了,在学习中,我们已经发现了弱可学习算法,那么我们能否将其升级为强可学习算法呢?...

2021-04-20 18:56:55 234

原创 bagging(自助聚合)的原理和案例分析

bagging(自助聚合)的原理和案例分析agging的案例分析(基于sklearn,介绍随机森林的相关理论以及实例)from sklearn.datasets import make_classificationfrom numpy import meanfrom numpy import stdfrom sklearn.datasets import make_classificationfrom sklearn.model_selection import cross_val_score

2021-04-17 20:29:42 1171

原创 Docker网络

sqadadadxc

2021-04-17 14:53:23 250

原创 Docker数据管理

Docker数据管理Docker在容器中管理数据主要有两种方式:数据卷(Volumes)挂载主机目录(Bind mounts)数据卷Docker的镜像是由多个只读的文件系统叠加在一起形成的。当我们在我启动一个容器的时候,Docker会加载这些只读层并在这些只读层的上面(栈顶)增加一个读写层。这时如果修改正在运行的容器中已有的文件,那么这个文件将会从只读层复制到读写层。该文件的只读版本还在,只是被上面读写层的该文件的副本隐藏。当删除Docker,或者重新启动时,之前的更改将会消失。在Do

2021-04-15 23:38:18 104

原创 集成学习之投票法的原理及案例分析

投票法的原理及案例分析投票法的思路:投票法可以根据权重,或者直接平均,将模型的预测结果进行融合。一般情况下进行多次预测,错误总是发生在局部,此时我们可以遵循多数服从少数的原则,因此融合多个数据是降低误差的一个好方法,这就是投票法的基本思路。投票法可以帮助我们提高模型的泛化能力,减少模型的错误率。对于回归模型来说,投票法最终的预测结果是多个其他回归模型预测结果的平均值。对于分类模型,硬投票法的预测结果是多个模型预测结果中出现次数最多的类别,软投票对各类预测结果的概率进行求和,最终选取概率之和最大的类标

2021-04-14 13:34:25 1117

原创 Docker镜像与容器

Docker镜像Docker 的镜像概念类似虚拟机的镜像。是一个只读的模板,一个独立的文件系统,包括运行容器所需的数据,可以用来创建新的容器。Docker镜像实际上是由一层一层的系统文件组成,这种层级的文件系统被称为UnionFS( Union file system 统一文件系统),镜像可以基于dockerfile构建,dockerfile(后面会详写)是一个描述文件,里面包含了若干条密令,每条命令都会对基础文件系统创建新的层次结构。获取镜像命令docker pull [Docker Regi

2021-04-14 10:03:54 210

原创 Docker在Ubuntu18.04的安装过程

笔者Windows已安装,所以此处只讲述Ubuntu18.04的安装过程一. 进入Docker下载官网点击此处进入二. 点击Install Docker Engine on Linux此处可以看到所支持的操作系统,我们选择Ubuntu我们可以看到具体支持的Ubuntu版本:Ubuntu Groovy 20.10Ubuntu Focal 20.04 (LTS)Ubuntu Bionic 18.04 (LTS)Ubuntu Xenial 16.04 (LTS)然后可以看到Docker

2021-04-12 22:36:39 190

原创 掌握分类问题的评估及参数调优

掌握分类问题的评估及参数调优使用网格搜索进行超参数调优:方式1:网格搜索GridSearchCV()

2021-03-29 21:31:08 234

原创 掌握基本的分类模型

掌握基本的分类模型使用sklearn构建完整的分类项目收集数据集并选择合适的特征:选择度量模型性能的指标:度量分类模型的指标和回归的指标有很大的差异,首先是因为分类问题本身的因变量是离散变量,因此像定义回归的指标那样,单单衡量预测值和因变量的相似度可能行不通。其次,在分类任务中,我们对于每个类别犯错的代价不尽相同,例如:我们将癌症患者错误预测为无癌症和无癌症患者错误预测为癌症患者,在医院和个人的代价都是不同的,前者会使得患者无法得到及时的救治而耽搁了最佳治疗时间甚至付出生命的代价,而后者只需要在后

2021-03-26 22:09:15 197

原创 掌握回归模型的参数评估及超参数调优

掌握回归模型的参数评估及超参数调优对模型超参数进行调优(调参):对模型得优化不止局限于对模型算法的优化,比如:岭回归对线性回归的优化是通过在线性回归的损失函数中加入L2正则化项从而牺牲无偏性降低方差。但是,大家是否想过这样的问题:在L2正则化中参数 ???? 应该选择多少?是0.01、0.1、还是1?到目前为止,我们只能凭经验或者瞎猜,能不能找到一种方法找到最优的参数 ???? ?事实上,找到最佳参数的问题本质上属于最优化的内容,因为从一个参数集合中找到最佳的值本身就是最优化的任务之一,我们脑海中浮现出

2021-03-24 20:01:02 1384

原创 掌握偏差与方差理论

掌握偏差与方差理论优化基础模型在刚刚的回归问题的基本算法中,我们使用数据集去估计模型的参数,如线性回归模型中的参数w,那么这个数据集我们称为训练数据集,简称训练集。我们在回归问题中使用训练集估计模型的参数的原则一般都是使得我们的损失函数在训练集达到最小值,其实在实际问题中我们是可以让损失函数在训练集最小化为0,如:在线性回归中,我加入非常多的高次项,使得我们模型在训练集的每一个数据点都恰好位于曲线上(如下图),那这时候模型在训练集的损失值也就是误差为0。那么我们的模型是否可以预测任意情况呢?答案是显

2021-03-22 22:36:25 372

原创 掌握基本的回归模型

掌握基本的回归模型使用sklearn构建完整的机器学习项目流程一般来说,一个完整的机器学习项目分为以下步骤:明确任务类型:回归/分类收集数据集并选择合适的特征。选择度量模型性能的指标。选择具体的模型并进行训练以优化模型。评估模型的性能并调参。使用sklearn构建完整的回归项目1.首先任务类型已指定:回归任务。2.收集数据集并选择合适的特征:3.选择度量模型性能的指标:MSE均方误差:mean_squared_error 函数计算均方误差MAE平均绝对误差:平均绝对误差可以避

2021-03-18 20:05:24 371

原创 熟悉机器学习的三大主要任务

熟悉机器学习的三大主要任务机器学习是什么?机器学习的一个目标是通过数学模型去理解数据,找到数据中的规律,以用来分析和预测数据。数据一般是一个向量组,这个向量组中的每个向量被称为样本,我们用 xi 来表示一个样本,其中 i=1,2,3,…,N ,共N个样本,每个样本 xi=(xi1,xi2,…,xip,yi) 共p+1个维度,前p个维度的每个维度我们称为一个特征,最后一个维度 yi 我们称为因变量(响应变量)。特征用来描述影响因变量的因素,如:我们在探索身高是否会影响体重的关系时,根据数据是否有因变量,机器

2021-03-15 18:59:08 382

原创 meta标签详解

meta标签详解声明文档使用的字符编码:<meta charset='utf-8'> 页面描述:<meta name="description" content="不超过150个字符"/> 页面关键词:<meta name="keywords" content=""/>网页作者:<meta name="author" content="name, email@gmail.com"/> robots用来告诉搜索机器人哪些页面需要牵引

2020-10-23 11:47:45 240

原创 HTML超链接QQ在线聊天

HTML超链接QQ在线聊天1,进去https://shang.qq.com/v3/widget.html登录需要超链接的QQ账号。选择推广工具,如下图:2,选择图标格式并输入提示语3,复制代码框中的代码,如下图:4,在网站合适位置添加此代码,手机点击效果图如下:注意!!!若提示无法发起临时会话,请检查uin是否赋值,uin的值为超链接到的QQ号...

2020-10-23 10:46:55 1192

原创 map热区自适应图片大小

map热区自适应图片大小``我的目的是点击一张图片的某一部分,会超链接到对应部分的网址,查阅无数资料,用ps切片转为web存储格式无果,图片不自适应屏幕大小了……后转用map热区,发现如果图片自适应屏幕,那map热区的坐标将改变,于是开始了漫漫长路……废话不多说,直接上js:<script src="jquery.imgMap.min.js"></script> <p> <img src="tupian.jpg" style="width:

2020-10-22 11:59:34 984

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除