集成学习之投票法的原理及案例分析

投票法的原理及案例分析

投票法的思路:

投票法可以根据权重,或者直接平均,将模型的预测结果进行融合。一般情况下进行多次预测,错误总是发生在局部,此时我们可以遵循多数服从少数的原则,因此融合多个数据是降低误差的一个好方法,这就是投票法的基本思路。投票法可以帮助我们提高模型的泛化能力,减少模型的错误率。
对于回归模型来说,投票法最终的预测结果是多个其他回归模型预测结果的平均值。
对于分类模型,硬投票法的预测结果是多个模型预测结果中出现次数最多的类别,软投票对各类预测结果的概率进行求和,最终选取概率之和最大的类标签。

投票法的原理分析

集成学习就是要发挥集体决策的优势,以单个分类模型的分类结果为基础,采用少数服从多数的原则确定模型预测的类别标签。通过多个模型的集成降低方差,从而提高模型的准确性。在理想情况下,投票法的预测效果应当优于任何一个基模型的预测效果。
举个简单的例子:

  • 硬投票法
    对于某个样本:
    模型一的预测结果是1
    模型二的预测结果是0
    模型三的预测结果是0
    有2/3的模型预测结果是0,所以硬投票法的结果是0。
  • 软投票法
    对于某个样本:
    模型 1 的预测结果是 类别 1 的概率为 99%
    模型 2 的预测结果是 类别 1 的概率为 49%
    模型 3 的预测结果是 类别 1 的概率为 49%
    最终对于类别A的预测概率的平均是 (99 + 49 + 49) / 3 = 65.67%,因此软投票法的预测结果是1。

相对于硬投票,软投票法考虑到了预测概率这一额外的信息,因此可以得出比硬投票法更加准确的预测结果。
在这里插入图片描述
在(a)图中,每个分类器原本只有66.6%的精度,集成学习却达到了100%;(b)图中,每个分类器都是一样的,集成之后性能没有任何提高;在(c)图中,每个分类器的精度只有33.3%,集成之后结果反而变得更糟。

这个例子表明:要获得好的集成,个体学习器应“好而不同”,即个体学习器要有一定的准确性,即学习器不能太坏,并且要有“多样性”(diversity),即学习器间具有差异。

所以要想投票法的结果比较理想,需要满足2个条件:

  • 基模型之间的效果不能差别过大。当某个基模型相对于其他基模型效果过差时,该模型很可能成为噪声。
  • 基模型之间应该有较小的同质性。例如在基模型预测效果近似的情况下,基于树模型与线性模型的投票,往往优于两个树模型或两个线性模型。

当基模型能预测出清晰的类别标签时,适合使用硬投票。当基模型能预测类别的概率时,适合使用软投票。软投票同样可以用于那些本身并不预测类成员概率的模型,只要他们可以输出类似于概率的预测分数值(例如支持向量机、k-最近邻和决策树)。

投票法的所有模型对预测的贡献都是一样的,如果一些模型在某些情况下很好,而在其他情况下很差,这是使用投票法时需要考虑到的一个问题。

投票法的案例分析(基于sklearn,介绍pipe管道的使用以及voting的使用)

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import VotingClassifier
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.neighbors import KNeighborsClassifier
from matplotlib import pyplot
from numpy import mean
from numpy import std
from sklearn.datasets import make_classification

models = [('lr',LogisticRegression()),('svm',SVC())]
ensemble = VotingClassifier(estimators=models)

# 定义数据集
def get_dataset():
    X, y = make_classification(  n_samples=1000, 
                                 n_features=20,
                                 n_informative=15,
                                 n_redundant=5, 
                                 random_state=2)
    # summarize the dataset
    return X,y


# 获取一组模型的投票
def get_voting():
  # 定义基模型
    models = list()
    models.append(('knn1', KNeighborsClassifier(n_neighbors=1)))
    models.append(('knn3', KNeighborsClassifier(n_neighbors=3)))
    models.append(('knn5', KNeighborsClassifier(n_neighbors=5)))
    models.append(('knn7', KNeighborsClassifier(n_neighbors=7)))
    models.append(('knn9', KNeighborsClassifier(n_neighbors=9)))
    # 定义投票集合
    ensemble = VotingClassifier(estimators=models, voting='hard')
    return ensemble


# 获取要评估的模型列表
def get_models():
    models = dict()
    models['knn1'] = KNeighborsClassifier(n_neighbors=1)
    models['knn3'] = KNeighborsClassifier(n_neighbors=3)
    models['knn5'] = KNeighborsClassifier(n_neighbors=5)
    models['knn7'] = KNeighborsClassifier(n_neighbors=7)
    models['knn9'] = KNeighborsClassifier(n_neighbors=9)
    models['hard_voting'] = get_voting()
    return models

#使用交叉验证评估给定模型
def evaluate_model(model, X, y):
    cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
    scores=cross_val_score(model,X,y,scoring='accuracy',cv=cv,n_jobs=-1,error_score='raise')
    return scores
X, y = get_dataset()
models = get_models()
results, names = list(), list()
for name, model in models.items(): 
    scores = evaluate_model(model, X, y)
    results.append(scores)
    names.append(name)
    print('>%s %.3f (%.3f)' % (name, mean(scores), std(scores)))
pyplot.boxplot(results, labels=names, showmeans=True)
pyplot.show()

在这里插入图片描述

通过箱形图我们可以看到硬投票方法对交叉验证整体预测结果分布带来的提升。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
加权投票集成学习是一种常用的集成学习,它通过将多个基分类器的预测结果进行加权平均或加权投票来得到最终的预测结果。其原理如下: 1. 基分类器训练:首先,我们需要训练多个基分类器。每个基分类器可以使用不同的算或者使用相同算的不同参数设置。通过使用不同的基分类器,可以增加模型的多样性,提高集成模型的泛化能力。 2. 预测结果融合:在测试阶段,每个基分类器对输入样本进行预测,并生成一个预测结果。这些预测结果可以是类别标签(如二分类问题中的0和1),也可以是概率值(如多分类问题中每个类别的概率)。然后,对这些预测结果进行加权平均或加权投票来得到最终的预测结果。 - 加权平均:对于回归问题或者概率预测问题,可以将每个基分类器的预测结果乘以一个权重,并将它们相加得到最终的预测结果。权重可以根据基分类器的性能进行分配,性能较好的基分类器可以分配较大的权重。 - 加权投票:对于分类问题,可以为每个基分类器分配一个权重,并根据基分类器的预测结果进行加权投票。最终的预测结果可以是得票最多的类别标签。 加权投票集成学习的优点在于能够结合多个基分类器的优势,提高模型的准确性和鲁棒性。同时,通过调整权重,可以对不同基分类器的贡献进行灵活控制。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

麻瓜与AI奇遇记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值