矩阵与向量的求导公式

设矩阵A,向量x\vec{x}则有

Axx=ATAxxT=A(xTA)x=A(xTAx)x=(AT+A)x\frac{\partial A\vec{x}}{\partial \vec{x}} = A ^ {T} \\ \frac{\partial A\vec{x}}{\partial \vec{x} ^ {T}} = A \\ \frac{\partial (\vec{x} ^ {T}A)}{\partial \vec{x}} = A \\ \frac{\partial (\vec{x} ^ {T}A\vec{x})}{\partial \vec{x}} = (A ^ {T} + A)\vec{x} \\
特别的,如果A=ATA = A ^ {T}(A为对称矩阵),则:
(xTAx)x=2Ax\frac{\partial (\vec{x} ^ {T}A\vec{x})}{\partial \vec{x}} = 2A\vec{x}

发布了576 篇原创文章 · 获赞 161 · 访问量 24万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览