- 博客(12)
- 收藏
- 关注
原创 Pytorch 模型加载
Pytorch加载模型当在特殊环境下会出现模型无法通过设置pretrained=True的方式来完成自动加载,这时我们需要完成手动加载。我们假设模型设置为:class Model(nn.Module): def __init__(self, num_classes=21): super(Model, self).__init__() self.backbone = timm.create_model('swin_tiny_patch4_window7_224',
2021-08-17 21:43:35 554 1
原创 Pytorch分布式训练
DistributedParallelDistributedParallel本身的目标是为了完成多机多卡的分布式训练。当然也可以完成单机多卡训练。运行方式python -m torch.distributed.launch --nproc_per_node=8 YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 and all other arguments of your training scrip
2021-08-13 16:26:13 321
原创 List、Numpy的切片操作
List、Numpy的切片操作List切片操作切片格式:list[start:stop:step]样例:nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]print(nums[:])print(nums[2:7]) #取值2-7print(nums[:6])print(nums[3:])print("步长默认为1")print(nums[:6:2]) #取值0-6 步长为2print(nums[3::2])prin
2021-05-10 15:35:46 278 2
原创 Tensorflow2.x版本常用函数
TensorFlow2.x中的常用函数合并与分割tf.concat()在特定的维度上进行合并tf.concat(tensor, axis)其中 tensors 保存了所有需要合并的张量 List,axis 指定需要合并的维度。a = tf.random.normal([4,35,8]) b = tf.random.normal([6,35,4])tf.concat([a,b], ax...
2020-04-02 17:43:40 635
原创 MacOS环境下基于Anaconda的Tensorflow安装
MacOS环境下基于Anaconda的Tensorflow安装因为MacOS的环境下,tensorflow暂不支持对于AMD显卡的ROCm驱动,因此安装CPU版本的TensorflowTensorFlow2.x安装(base环境)进入到base虚拟环境下#使用pip安装pip install tensorflow可能会出现run timeout使用镜像安装即可pip instal...
2020-04-01 12:06:11 349 1
原创 Python机器学习及实践(二、回归预测——支持向量机回归于K近邻回归)
Python机器学习及实践(二、回归预测——支持向量机回归于K近邻回归)代码及注释输入:#支持向量机from sklearn.datasets import load_bostonboston=load_boston()print( boston.DESCR)#.DESCR查看数据描述from sklearn.model_selection import train_test_sp...
2019-10-27 14:42:37 493
原创 Python机器学习及实践(二、回归预测——线性回归器)
Python机器学习及实践(二、回归预测——线性回归器)回归预测简介回归预测就是把预测的相关性原则作为基础,把影响预测目标的各因素找出来,然后找出这些因素和预测目标之间的函数关系的近似表达,并且用数学的方法找出来。在利用样本数据对其模型估计参数,并且对模型进行误差检验。如果模型确定,就可以用模型对因素的的变化值进行预测代码及注释输入:from sklearn.datasets impor...
2019-10-23 15:52:46 467 1
原创 Python机器学习及实践(一、分类学习——决策树 随机森林 梯度提升决策树)
Python机器学习及实践(一、分类学习——决策树 随机森林 梯度提升决策树)决策树分类简介集成模型分类简介代码及注释输入:#决策树 随机森林 梯度提升决策树import pandas as pdtitanic=pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt')# ...
2019-10-21 15:13:05 995 1
原创 Python机器学习及实践(一、分类学习——K近邻分类)
Python机器学习及实践(一、分类学习——K近邻分类)支持向量机简介K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。代码及注释输入:from sklearn.model_select...
2019-10-21 13:57:09 377
原创 Python机器学习及实践(一、分类学习——朴素贝叶斯分类器)
Python机器学习及实践(一、分类学习——朴素贝叶斯分类器)朴素贝叶斯简介是一个实用性很强的一个分类器模型,朴素贝叶斯分类器的构造基础是贝叶斯理论。代码及注释输入:from sklearn.feature_extraction.text import CountVectorizerfrom sklearn.naive_bayes import MultinomialNBfrom s...
2019-10-19 15:46:18 324 1
原创 Python机器学习及实践(一、分类学习——支持向量机分类器)
Python机器学习及实践(一、分类学习——支持向量机分类器)支持向量机简介支持向量机(support vector machines)是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化代码及注释输入:#支持向量机#导入手写数字识别数据#type 获取数据类型 dtype获取数组数据类型 astype()修改数据类型from sklearn.dat...
2019-10-18 16:17:59 386 1
原创 Python机器学习及实践(一、分类学习——线性分类器)
Python机器学习及实践(一、分类学习——线性分类器)线性分类器通过特征的线性组合来做出分类决定,以达到此种目的。对象的特征通常被描述为特征值,而在向量中则描述为特征向量。线性分类器简介全新的界面设计 ,将会带来全新的写作体验;在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接...
2019-10-16 16:16:50 1388 4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人