Python机器学习及实践(一、分类学习——朴素贝叶斯分类器)

Python机器学习及实践(一、分类学习——朴素贝叶斯分类器)

朴素贝叶斯简介

是一个实用性很强的一个分类器模型,朴素贝叶斯分类器的构造基础是贝叶斯理论。

代码及注释

输入:

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.datasets import fetch_20newsgroups
news = fetch_20newsgroups(subset = "all")
print(len(news.data))
print(news.data[0])
X_train, X_test, y_train, y_test = train_test_split(news.data, news.target, test_size = 0.25, random_state = 33)
vec = CountVectorizer()           #将文本转化成特征向量
X_train = vec.fit_transform(X_train)
X_test = vec.transform(X_test)
mnb = MultinomialNB()
mnb.fit(X_train,y_train)
y_predict = mnb.predict(X_test)
print("The accuracy is :", mnb.score(X_test,y_test))
print(classification_report(y_test, y_predict, target_names = news.target_names))

输出:

18846
From: Mamatha Devineni Ratnam <mr47+@andrew.cmu.edu>
Subject: Pens fans reactions
Organization: Post Office, Carnegie Mellon, Pittsburgh, PA
Lines: 12
NNTP-Posting-Host: po4.andrew.cmu.edu



I am sure some bashers of Pens fans are pretty confused about the lack
of any kind of posts about the recent Pens massacre of the Devils. Actually,
I am  bit puzzled too and a bit relieved. However, I am going to put an end
to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they
are killing those Devils worse than I thought. Jagr just showed you why
he is much better than his regular season stats. He is also a lot
fo fun to watch in the playoffs. Bowman should let JAgr have a lot of
fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final
regular season game.          PENS RULE!!!


The accuracy is : 0.8397707979626485
                          precision    recall  f1-score   support

             alt.atheism       0.86      0.86      0.86       201
           comp.graphics       0.59      0.86      0.70       250
 comp.os.ms-windows.misc       0.89      0.10      0.17       248
comp.sys.ibm.pc.hardware       0.60      0.88      0.72       240
   comp.sys.mac.hardware       0.93      0.78      0.85       242
          comp.windows.x       0.82      0.84      0.83       263
            misc.forsale       0.91      0.70      0.79       257
               rec.autos       0.89      0.89      0.89       238
         rec.motorcycles       0.98      0.92      0.95       276
      rec.sport.baseball       0.98      0.91      0.95       251
        rec.sport.hockey       0.93      0.99      0.96       233
               sci.crypt       0.86      0.98      0.91       238
         sci.electronics       0.85      0.88      0.86       249
                 sci.med       0.92      0.94      0.93       245
               sci.space       0.89      0.96      0.92       221
  soc.religion.christian       0.78      0.96      0.86       232
      talk.politics.guns       0.88      0.96      0.92       251
   talk.politics.mideast       0.90      0.98      0.94       231
      talk.politics.misc       0.79      0.89      0.84       188
      talk.religion.misc       0.93      0.44      0.60       158

                accuracy                           0.84      4712
               macro avg       0.86      0.84      0.82      4712
            weighted avg       0.86      0.84      0.82      4712

知识点

1.from sklearn.datasets import fetch_20newsgroups

fetch_20newsgroups是一个需要从网上下载的数据集。
参数中subset有三个值:train、test 、all

2.from sklearn.feature_extraction.text import CountVectorizer

CountVectorizer可以将文本文档集合转换为计数矩阵,变为特征向量。

3.from sklearn.naive_bayes import MultinomialNB

针对多项式模型的朴素贝叶斯(Naive Bayes)分类器。
多项式朴素贝叶斯分类器适合离散特征的分类问题。(例如:文本分类中的单词计数)。
多项式分布一般要求特征计数是整数。然而,实际应用中,如tf-idf这种分数计数也可能有效。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值