【学习之路】Multi Agent Reinforcement Learning框架与代码

【学习之路】Multi Agent Reiforcement Learning框架与代码

Introduction

国庆期间,有个客户找我写个代码,是强化学习相关的,但我没学过,心里那是一个慌,不过好在经过详细的调研以及自身的实力,最后还是解决了这个问题。

强化学习的代码也是第一次接触,在这个过程中也大概了解了多agent强化学习的大致流程,因此记录这次代码和文章学习的过程还是十分有必要的。

要完成的文章是:Flexible Formation Control Using Hausdorff Distance: A Multi-agent Reinforcement Learning Approach,该文章没有开源。

以下均为个人简介,如有不当,还请见谅。

Timeline

  • 从目标文章中查找类似文章,最好是开源的
    • Decentralized Multi-agent Formation Control via Deep Reinforcement Learning:这篇文章有算法的基本流程
    • Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments:这篇文章是目标文章所使用仿真环境的出处
  • 查找多agent强化学习的开源代码
  • 学习这些代码,推荐先学习没有利用框架的,也就是第二篇,然后看用框架写的

Code Note

主要针对框架代码进行学习,即:multiagent-particle-envsMulti-Agent-Deep-Deterministic-Policy-Gradients,后者使用了前者的环境。

整体流程

首先介绍一下训练的整体流程,方便更好的理解:

  • 创建多agent的环境
  • 实现强化学习的模型M(actor-critic模型)
  • 确定相关参数:迭代次数,学习率等
  • 循环
    • 重置环境获得当前的observation
    • 根据observation输入到M中的actor网络(这部分不作讲解),得到action
    • 根据action更新当前的state,获得reward,更新的observation
    • 将这些state存入memory
    • 每隔一定迭代次数,从memory里面采样一些state,输入到模型M里面,从而对M进行训练

环境代码

该项目下代码以及文件夹的功能如下:

在这里插入图片描述
下面主要介绍enviroment文件下一些函数的作用。

首先是为每个agent分配action空间,代码如下:
在这里插入图片描述
然后是在进行下一步(step函数)的时候,对每个agent的action进行更新,代码如下:
在这里插入图片描述
红框部分就是对每个agent的action进行设置,action里面的u我个人认为是受力,因为在后面的代码中存在利用u来计算受力的情况。

得到action后,利用action对state进行更新,该部分的代码在core.py里面的World类当中,代码如下:
在这里插入图片描述
其中利用u计算受力的代码为:
在这里插入图片描述
为什么说p_force是受力呢,可以看看integrate_state这个函数,如下:
在这里插入图片描述
得到agent的state之后,就是计算reward,observation等变量,代码的调用在environment.py下:

在这里插入图片描述
从make_env.py文件里面可以看出,这些函数的相关实现在scenarios文件下的py文件里面:
在这里插入图片描述

接下来看这些函数是怎么实现的,以simle_spread.py文件为例:

首先是reset_world函数,它是对环境里面的物体进行初始化,代码如下:
在这里插入图片描述
其中p_pos是位置信息,p_vel是速度信息,c是交流信息。

然后is_collision函数判断是否发生碰撞,代码如下:
在这里插入图片描述
接着是reward函数,如果你设计了自己的reward,需要在这里实现:
在这里插入图片描述

最后是observation函数,如果你有自己的设计,也要在这里实现:
在这里插入图片描述

了解了以上这些,对于一个简单的多agent强化学习的情况你也能够实现了。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 多智能体强化学习Multi-Agent Reinforcement Learning)是一种机器学习技术,用于训练多个智能体在互动环境中进行决策和行动。每个智能体可以观察环境状态和其他智能体的行为,并根据收到的奖励对自己的决策进行调整,以最大化总体收益。多智能体强化学习在协同问题、竞争问题和大规模问题等领域具有广泛的应用。 ### 回答2: 多智能体强化学习Multi-Agent Reinforcement Learning,MARL)是深度强化学习领域的一种技术,它将强化学习方法扩展到多个智能体之间的交互和协作的场景中。MARL 帮助智能体在无人环境中学习,从而使创造更为灵活和适应性强的系统,这种系统表现出不仅是单个智能体独立行动的复杂性,同时包括了多个智能体之间的协作以及竞争。 与单智能体强化学习(Single-Agent Reinforcement Learning,SARL)不同,MARL 考虑的是多个智能体的行动和策略的交互。在 MARL 中,存在多个互动的智能体,可能会有不同的目标要达成。这些智能体之间相互影响,通过智能体选择行动所得到的奖励进行学习。 此外,多智能体强化学习还需要考虑协调、合作和竞争,通过协调和合作,多个智能体可以互相帮助达成各自的任务,而通过竞争反而会导致学习变得更难。 MARL 可应用于许多实际问题,例如无人机的群体飞行、机器人的协作操作、社交网络中的用户行为模式等。 然而,因为多智能体学习系统的复杂性,MARL 面临许多挑战,例如,在多智能体协作的环境中,互相帮助的智能体容易出现损失函数的不一致,从而导致无法达成协作目标。此外,当一个智能体发现有问题时,它的学习会影响整个系统,因此有效的 MARL 算法需要考虑整个系统的学习效率、稳定性和收敛性。 目前,研究者们已经提出了多种有效的 MARL 模型和算法,并且在一些真实环境(如多机器人系统控制)中也取得了良好的效果。 将来,MARL 算法的研究和应用将会在更广泛的领域发挥作用,从而创造出更加灵活、高效和应变能力强的智能系统。 ### 回答3: 多智能体强化学习是指多个智能体在一个相同的环境中进行协作与竞争,在其长期的行为中通过强化学习方式相互协作,从而最大化总体获得的奖惩值的技术。 在传统的强化学习中,一个智能体通过进行感知、决策和行动,最大化其个体获得的奖赏。但是当多个智能体在一个相同的环境中进行协作或竞争的时候,传统的强化学习方法会出现两个问题。首先,每个智能体采取的行动不仅仅对自己的奖惩产生影响,还会影响其他智能体的奖惩及环境,这会导致局部最优解决方案并不总是能够最大化整个系统的奖惩。其次,过度采取竞争策略可能导致个体之间的合作减少,最终导致全局表现较差。 多智能体强化学习的解决方式之一是CO-OP(协作)方法,即通过一组智能体协同合作以最大化总体奖励,可以采用集体智慧的方式解决问题。CO-OP智能体的一些策略有协调、通信以及分工合作。其他的可靠的策略是基于博弈论的方法,其中智能体会从其决策和行为中推断它们的对手,并相应地调整策略,这种方法的名称是Nash-Equilibrium,并且尚有多种形式的改进策略正在发展之中。 总之,多智能体强化学习是一种通过多个智能体在一个相同的环境中进行协作与竞争,在长期行为中相互协作的方法,以最大化其总体获得的奖惩的技术。多智能体强化学习可以通过CO-OP方法或基于博弈论的方法来解决在传统强化学习中出现的合作和竞争问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lzl2040

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值