回溯法图解

回溯法是一种试探性的搜索策略,通过深度优先遍历解空间树,寻找满足约束条件的解。当发现当前路径不可行时进行回溯。算法涉及关键概念包括子集树、排列树,并常用于0/1背包问题、最短路径问题等。通过剪枝技术如左剪枝和右剪枝,可以优化搜索效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回溯法

简介

回溯法又称为试探法,实际上一个类似穷举的搜索尝试过程,主要是在搜索尝试过程中寻找向题的解,当发现已不满足求解条件时,就“回溯”(即回退),尝试别的路径。回溯法有“通用解题法”之称它适合于解一些 组合数 较大的最优化向题。

算法设计思想
(建议认真看,要理解一个算法,理解文字化描述的思想是必须的)
    一句话:回溯法从根结点出发,按照深度优先策略遍历解空间树,搜索满足约束条件的解。
    在搜索至树中任一结点时,先判断该结点对应的 部分解 是否满足约束条件(约束函数),或者是否超出限界函数的界限(限界函数),也就是判断该结点是否可能包含问题的答案解:
        如果肯定不包含,则跳过对以该结点为根的子树的搜索,即所谓剪枝( Pruning);
        否则,进入以该结点为根的子树,继续按照深度优先策略搜索并进行判断。
    若用回湖法求问题的所有解时,需要回溯到根结点,且根结点的所有可行的子树都要被搜索完才结束。而若使用回湖法求任一个解时,只要搜索到向题的一个解就可以结束。

重要概念:

	 解空间:排列组合数的枚举
	 解空间树:
		 - 子集树,2的n次方个叶子节点(在集合中找某个符合条件的子集);
		 - 排列树,Amn个叶子节点(在确定n个数中找到符合条件的排列);

	解决:求任一解,求全部可行解,求最优解
	约束:显式约束(给定问题集合),隐式约束(目标求解条件)
	剪枝函数:
		 - 约束函数:用约束函数在扩展结点处剪除不满足约束的子树;
		 - 限界函数:用限界函数剪去得不到向题解或最优解的子树。   

子集树示例:
子集树
排列树示例:
排列树

解题步骤:

1、针对所给向题,确定问题的解空间树,问题的解空间树应至少包含问题的一个解就者最优解
2、确定结点的扩展搜索规则
3、以深度优先方式搜索解空间树,并在搜索过程中采用剪枝函数来避免无效搜索。
    其中,深度优先方式可以选择递归回溯或者迭代回溯

代码实例:

子集树参考代码,经典问题 0/1背包:
    有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?

/*0-1背包  子集树 */ 
void calV(int i,int tolw,int tolv){
   
    if(i>NUM){
   
        if (tolw <= WEIGHT && tolv > maxv) {
   
            maxw=tolw;
            maxv=tolv;
            
### KMP算法中的Next数组求法 KMP算法的核心在于构建`next`数组,该数组记录了模式串的部分匹配特性,从而帮助跳过不必要的比较操作。以下是关于如何通过图解来理解和学习`next`数组的具体方法。 #### 什么是 Next 数组? `next[j]`表示的是模式串前缀与后缀相等的最大长度[^1]。对于给定的模式串`P`,如果已知`next[j]=k`,则意味着子串`p1p2...pk-1`等于子串`pj-k+1...pj-1`,即最长公共前后缀的长度为`k-1`[^2]。 #### 如何计算 Next 数组? 假设当前已经得到了`next[0], next[1], ..., next[j-1]`,现在要求数组中的下一个值`next[j]`: 1. **初始化条件** `next[0]=-1`或者`next[0]=0`取决于实现方式。这里我们采用`next[0]=0`作为初始状态。 2. **逐步扩展索引 j 的情况** 对于任意位置`j>0`,寻找最大的`k (1<k<j)`使得`'p1p2…pk-1'='pj-k+1…pj-1'`成立。此时可以定义如下关系: - 如果字符`pj==pk`,那么有`next[j+1]=next[j]+1`; - 否则回溯到更短的相同部分继续尝试匹配直到找到合适的最大长度为止。 下面给出具体的例子说明这一过程: #### 实例分析 考虑模式串 P="ababc": | i | a | b | a | b | c | |---|------|-------|--------|---------|----------| | Pi| 'a' | 'b' | 'a' | 'b' | 'c' | | k | 0 | 0 | 1 | 2 | ? | 当处理到最后一位(c),由于前面不存在任何重复结构能完全覆盖它之前的内容,因此最终得到的结果应该是零(`next[4]=0`)。 ```python def compute_next(pattern): n = len(pattern) next_arr = [0]*n # 初始化第一个元素 if pattern[:1]==pattern[-1:]: next_arr[0] = 1 for i in range(1,n): t = next_arr[i-1] while True: if pattern[t]==pattern[i]: break elif t > 0 : t = next_arr[t-1] else: t=-1 break next_arr[i] =t +1 return next_arr if __name__ == "__main__": pat = "ABABC" res =compute_next(pat) print(res) ``` 上述代码实现了基于规则描述的方法去自动填充整个next[]表项的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值