SRA:基于多指标的多目标优化随机排序算法
参考文献
《Bingdong Li, Student Member , IEEE, Ke Tang, Senior Member , IEEE, Jinlong Li, Member , IEEE, and Xin Yao , Fellow, IEEE:Stochastic Ranking Algorithm for Many-Objective Optimization Based on Multiple Indicators》
要点
单一指标可能会有偏差,导致种群向帕累托前沿的一个次优区域汇聚。本文针对多目标优化问题,提出了一种基于多指标的算法。该算法采用随机排序技术来平衡不同指标的搜索偏差,即基于随机排序的多指标算法。
实证研究表明,与最先进的算法相比,SRA在反向世代距离和超体积指标方面表现良好。在一个问题需要算法具有很强的收敛能力的情况下,SRA的性能可以通过基于导向的档案来存储收敛良好的解和保持多样性来进一步提高。
一、介绍
随着多目标问题中目标数量的增加,非支配解的比例相当大,传统的帕累托支配失去了将种群推向最优解的效率。当基于支配的(主要)选择标准不能区分非支配解时,基于多样性的(次要)标准在环境选择中起着至关重要的作用。因此,最终的群体可能遍布整个目标空间,但无法收敛到PF。
为了克服这一障碍,研究者提出了各种多目标进化算法。根据所使用的关键思想,这些方法可以分为六类。
1)基于松弛支配的算法试图通过扩大解的支配区域来缓解支配的低效性。已经提出了一系列方法,例如ε-支配,控制解的支配面积,和L-支配。在这些松弛的定义下,一个解被其他解支