机器学习:最小二乘支持向量机(Least Squares Support Vector Machine)
参考文献
《A Novel Method for Energy Consumption Prediction of Underwater Gliders Using Optimal LSSVM with PSO Algorithm》
一、最小二乘支持向量机(LSSVM)
LSSVM是Suykens等人提出的一种机器学习算法。LSSVM作为一种基于统计理论的改进型支持向量机,具有先进的完备理论体系,能够将二次优化问题的解转化为线性方程组的求解,从而简化了问题的求解。因此,它已成功地应用于多个领域,包括数据回归、模式识别、时间序列预测等。
对于给定的训练数据(xi,yi),其中xi=(xi1,xi2,…,xid)T是d维的输入向量,yi是相应的输出数据,N是训练数据的总数。为了将输入空间映射到特征空间,采用非线性函数φ(xi),非线性函数估计建模的形式如下:
其中w是权重向量,b是偏置项和符号<·>指内积操作。
基于结构化风险最小化原则,评估问题被描述为优化问题: