机器学习:最小二乘支持向量机(Least Squares Support Vector Machine)

机器学习:最小二乘支持向量机(Least Squares Support Vector Machine)

参考文献
《A Novel Method for Energy Consumption Prediction of Underwater Gliders Using Optimal LSSVM with PSO Algorithm》

一、最小二乘支持向量机(LSSVM)

LSSVM是Suykens等人提出的一种机器学习算法。LSSVM作为一种基于统计理论的改进型支持向量机,具有先进的完备理论体系,能够将二次优化问题的解转化为线性方程组的求解,从而简化了问题的求解。因此,它已成功地应用于多个领域,包括数据回归、模式识别、时间序列预测等。

对于给定的训练数据(xi,yi),其中xi=(xi1,xi2,…,xid)T是d维的输入向量,yi是相应的输出数据,N是训练数据的总数。为了将输入空间映射到特征空间,采用非线性函数φ(xi),非线性函数估计建模的形式如下:

在这里插入图片描述

其中w是权重向量,b是偏置项和符号<·>指内积操作。

基于结构化风险最小化原则,评估问题被描述为优化问题:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值