平移,贪心算法
题目描述:
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。
在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
示例:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
java代码:
class Solution {
public int maxArea(int[] height) {
if(height.length <= 1) return -1;
int i = 0, j = height.length - 1, res = 0;
while(i < j){
int h = Math.min(height[i], height[j]);
res = Math.max(res, h * (j - i));
if(height[i] < height[j]) ++i;
else --j;
}
return res;
}
}
一开始两个指针一个指向开头一个指向结尾,此时容器的底是最大的,接下来随着指针向内移动,会造成容器的底变小,在这种情况下想要让容器盛水变多,就只有在容器的高上下功夫。每次-1选择高的一边放弃矮的一边。
本文内容只适用于个人,方便以后回看学习。