回文数猜想

问题描述:

一个正整数,如果从左向右读(称之为正序数)和从右向左读(称之为倒序数)是一样的,这样的数就叫回文数。任取一个正整数,如果不是回文数,将该数与他的倒序数相加,若其和不是回文数,则重复上述步骤,一直到获得回文数为止。例如:68变成154(68+86),再变成605(154+451),最后变成1111(605+506),而1111是回文数。于是有数学家提出一个猜想:不论开始是什么正整数,在经过有限次正序数和倒序数相加的步骤后,都会得到一个回文数。至今为止还不知道这个猜想是对还是错。现在请你编程序验证之。

输入:

每行一个正整数。
特别说明:输入的数据保证中间结果小于2^31。

输出:

对应每个输入,输出两行,一行是变换的次数,一行是变换的过程。

样例输入:

27228
37649

样例输出:

3
27228 - - -> 109500 - - ->115401- - ->219912
2
37649- - ->132322 - - ->355553

样例数据分析:

有样例可知,需要用到EOF多组数据测试;
输出格式:
若输入一个数,
输出:
该数进行题目上述规则变换到回文数所用步骤

代码如下:

#include <iostream>
#include<stdio.h>
using namespace std;


int huiwenshu(int x)//回文数输出返回
{
    int t,sum=0;
    t=x;
    while(x)
    {
        sum = sum*10+x%10;
        x/=10;
    }
    return sum;
}
int main()
{
    int j,count1=0,x,i;
    int a[100];
    while(scanf("%d",&x)!=EOF)
    {
        a[0]=x;//将第一个数赋值给a[0]
        if(x==huiwenshu(x))//若该数与相反的数大小相同则,判定为回文数,不需要步骤变换
        {
            count1=0;//步骤数为0;
        }
        else//若不是回文数
        {
            for(i=0,count1=0; a[i]!=huiwenshu(a[i]); i++,count1++)//每次循环步骤加一,当这个数与它的反数大小相同是,则为回文数跳出循环
            {
                a[i+1]=a[i]+huiwenshu(a[i]);//有规则可知,将a[i]+进过反之后的数相加赋值给a[i+1]
                //之后,也就是说a数组里面的数全都是要输出的数
            }
        }
        printf("%d\n",count1);//输出转换的步骤数

        for(j=0; j<count1+1; j++)//经过几个步骤,就需要输出步骤数+1个数
        {
            printf("%d",a[j]);//输出该数组内容
            if(j!=count1)//若不是最后一步,则输出箭头符号
                printf("--->");
        //也就是,输出一个数,然后在输出一个箭头符号;若是最后一个数,这不输出箭头符号
        }
        printf("\n");//由于是多组数据,所以要换行
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

beyond谚语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值