摘要 :传统口腔正畸长期依赖医生经验与二维影像,面临三维分析不足、方案定制困难等问题。本文以Dolphin Imaging和乐齿拍为例,探讨AI如何推动行业变革。Dolphin Imaging通过CBCT三维重建实现亚毫米级精度,支持复杂病例诊疗;乐齿拍则以家用口扫设备结合动态跟踪功能,降低检测成本至传统方式的1/10,推动家庭健康管理普及。
研究发现,AI可将诊断效率提升5倍,埋伏牙定位误差从2mm降至0.3mm。未来,生物力学模型优化与多组学数据整合将进一步提升精准性,行业生态也将从医院向社区延伸,重构医生角色与产业链格局。
关键词:口腔正畸、人工智能、技术创新、乐齿拍、Dolphin imaging
- 引言
近年来,全球正畸市场呈现出蓬勃发展的态势,规模持续扩张。中商产业研究院发布的报告显示,2024 年中国正畸市场规模已增至 670 亿元,预计 2025 年将进一步增长,若按近年复合增长率 4.58% 推算,可能达到约700 亿元。这一增长趋势反映出人们对口腔健康和美观的关注度不断提高,正畸需求日益旺盛。然而,传统正畸模式却面临着效率与精度的双重瓶颈。传统正畸主要依赖医生的经验和二维影像资料,在诊断和治疗方案设计上存在一定的局限性,难以满足现代患者对高效、精准正畸治疗的需求。
在“中国知网”中以“口腔正畸”“人工智能”为主题词的总体趋势分析(2025 年3 月 27 日检索)如下:
上图表明,
人工智能技术的介入成为正畸行业发展的必然趋势。计算机视觉和深度学习等人工智能技术,能够对正畸诊断、治疗设计以及患者管理的全流程进行重塑。通过对大量病例数据的学习和分析,AI可以实现医学影像的自动化处理、治疗效果的精准预测以及医患沟通的优化,从而提高正畸治疗的效率和精度。
本研究旨在通过对比分析Dolphin Imaging与乐齿拍这两款具有代表性的正畸产品,探讨AI驱动的正畸数字化转型路径。研究方法主要采用案例分析和对比研究,通过收集和分析两款产品的技术特点、临床应用案例以及用户反馈等数据,深入剖析它们在正畸领域的优势和不足。
选择Dolphin Imaging和乐齿拍作为案例,是因为它们分别代表了专业医疗和消费级市场的典型路径,具有较强的代表性和研究价值。通过对它们的对比研究,可以为正畸行业的数字化转型提供有益的参考和借鉴。
- 口腔正畸学的核心挑战
正畸学旨在矫正牙齿和颌面部的异常,以改善口腔功能和美观。然而,这一领域面临着诸多核心挑战,尤其是在三维空间分析和个性化治疗方案设计方面。
三维空间分析
在三维空间分析上,正畸治疗需要精确了解颌骨、牙齿和软组织之间的协同关系。人体口腔是一个复杂的三维结构,牙齿的排列、颌骨的形态以及软组织的轮廓相互影响。例如,在矫正牙齿拥挤问题时,不仅要考虑牙齿在牙弓内的排列,还要关注牙齿与上下颌骨的相对位置,以及对面部软组织外观的影响。传统的正畸诊断主要依赖于二维X光片,这使得医生难以全面准确地获取三维空间信息。研究表明,使用二维X光片进行埋伏牙定位时,误差可能超过2mm,这无疑增加了治疗的难度和风险(Yao等, 2023)。
个性化治疗方案
个性化治疗方案的设计也是正畸学的一大难题。每个患者的口腔情况都是独特的,治疗方案需要根据患者的具体情况进行定制。在决定是否拔牙、选择何种支抗以及控制矫治力等方面,都需要综合考虑患者的年龄、牙齿状况、颌骨发育等多种因素(Xie等, 2023)。例如,对于一些严重的骨性错合畸形患者,可能需要进行正颌手术联合正畸治疗,而手术方案的选择和时机的把握都需要精准判断。此外,不同患者对矫治力的反应也存在差异,如何精确控制矫治力以达到最佳治疗效果,是正畸医生面临的挑战之一。
经验依赖问题
传统正畸技术在应对这些挑战时存在明显的局限性。除了二维X光片导致的三维信息缺失外,经验依赖问题也十分突出。治疗方案的设计在很大程度上取决于医生的个人经验,标准化程度低。不同医生对同一病例可能给出不同的诊断和治疗方案,这不仅影响治疗效果的稳定性,还可能导致患者接受不必要的治疗或错过最佳治疗时机。因此,正畸学迫切需要引入新的技术来突破这些瓶颈,而人工智能技术的出现为解决这些问题提供了新的途径。
传统正畸VS数字化正畸
以下是传统正畸与数字化正畸方案的差异对比: