摘要 :传统口腔正畸长期依赖医生经验与二维影像,面临三维分析不足、方案定制困难等问题。本文以Dolphin Imaging和乐齿拍为例,探讨AI如何推动行业变革。Dolphin Imaging通过CBCT三维重建实现亚毫米级精度,支持复杂病例诊疗;乐齿拍则以家用口扫设备结合动态跟踪功能,降低检测成本至传统方式的1/10,推动家庭健康管理普及。
研究发现,AI可将诊断效率提升5倍,埋伏牙定位误差从2mm降至0.3mm。未来,生物力学模型优化与多组学数据整合将进一步提升精准性,行业生态也将从医院向社区延伸,重构医生角色与产业链格局。
关键词:口腔正畸、人工智能、技术创新、乐齿拍、Dolphin imaging
- 引言
近年来,全球正畸市场呈现出蓬勃发展的态势,规模持续扩张。中商产业研究院发布的报告显示,2024 年中国正畸市场规模已增至 670 亿元,预计 2025 年将进一步增长,若按近年复合增长率 4.58% 推算,可能达到约700 亿元。这一增长趋势反映出人们对口腔健康和美观的关注度不断提高,正畸需求日益旺盛。然而,传统正畸模式却面临着效率与精度的双重瓶颈。传统正畸主要依赖医生的经验和二维影像资料,在诊断和治疗方案设计上存在一定的局限性,难以满足现代患者对高效、精准正畸治疗的需求。
在“中国知网”中以“口腔正畸”“人工智能”为主题词的总体趋势分析(2025 年3 月 27 日检索)如下:
上图表明,
人工智能技术的介入成为正畸行业发展的必然趋势。计算机视觉和深度学习等人工智能技术,能够对正畸诊断、治疗设计以及患者管理的全流程进行重塑。通过对大量病例数据的学习和分析,AI可以实现医学影像的自动化处理、治疗效果的精准预测以及医患沟通的优化,从而提高正畸治疗的效率和精度。
本研究旨在通过对比分析Dolphin Imaging与乐齿拍这两款具有代表性的正畸产品,探讨AI驱动的正畸数字化转型路径。研究方法主要采用案例分析和对比研究,通过收集和分析两款产品的技术特点、临床应用案例以及用户反馈等数据,深入剖析它们在正畸领域的优势和不足。
选择Dolphin Imaging和乐齿拍作为案例,是因为它们分别代表了专业医疗和消费级市场的典型路径,具有较强的代表性和研究价值。通过对它们的对比研究,可以为正畸行业的数字化转型提供有益的参考和借鉴。
- 口腔正畸学的核心挑战
正畸学旨在矫正牙齿和颌面部的异常,以改善口腔功能和美观。然而,这一领域面临着诸多核心挑战,尤其是在三维空间分析和个性化治疗方案设计方面。
三维空间分析
在三维空间分析上,正畸治疗需要精确了解颌骨、牙齿和软组织之间的协同关系。人体口腔是一个复杂的三维结构,牙齿的排列、颌骨的形态以及软组织的轮廓相互影响。例如,在矫正牙齿拥挤问题时,不仅要考虑牙齿在牙弓内的排列,还要关注牙齿与上下颌骨的相对位置,以及对面部软组织外观的影响。传统的正畸诊断主要依赖于二维X光片,这使得医生难以全面准确地获取三维空间信息。研究表明,使用二维X光片进行埋伏牙定位时,误差可能超过2mm,这无疑增加了治疗的难度和风险(Yao等, 2023)。
个性化治疗方案
个性化治疗方案的设计也是正畸学的一大难题。每个患者的口腔情况都是独特的,治疗方案需要根据患者的具体情况进行定制。在决定是否拔牙、选择何种支抗以及控制矫治力等方面,都需要综合考虑患者的年龄、牙齿状况、颌骨发育等多种因素(Xie等, 2023)。例如,对于一些严重的骨性错合畸形患者,可能需要进行正颌手术联合正畸治疗,而手术方案的选择和时机的把握都需要精准判断。此外,不同患者对矫治力的反应也存在差异,如何精确控制矫治力以达到最佳治疗效果,是正畸医生面临的挑战之一。
经验依赖问题
传统正畸技术在应对这些挑战时存在明显的局限性。除了二维X光片导致的三维信息缺失外,经验依赖问题也十分突出。治疗方案的设计在很大程度上取决于医生的个人经验,标准化程度低。不同医生对同一病例可能给出不同的诊断和治疗方案,这不仅影响治疗效果的稳定性,还可能导致患者接受不必要的治疗或错过最佳治疗时机。因此,正畸学迫切需要引入新的技术来突破这些瓶颈,而人工智能技术的出现为解决这些问题提供了新的途径。
传统正畸VS数字化正畸
以下是传统正畸与数字化正畸方案的差异对比:
对比维度 | 传统正畸 | 数字化正畸 |
影像信息 | 二维,信息缺失 | 三维,全面准确 |
治疗方案设计 | 依赖医生经验,标准化低 | AI辅助,精准度高 |
诊断误差 | 埋伏牙定位误差>2mm | 误差显著降低 |
治疗效率 | 较低 | 较高 |
- 回顾正畸行业的技术创新
正畸行业的发展历程中,有几个关键的时间节点和技术创新成为了推动行业从传统向数字化转型的重要拐点。
2000s,隐形矫治器(Invisalign)的普及是正畸数字化的萌芽阶段。传统的金属牙套不仅影响美观,还会给患者带来诸多不便。隐形矫治器的出现,以其透明、舒适、可摘戴等优点,迅速受到患者的欢迎。
它通过计算机辅助设计和制造技术,为患者定制一系列个性化的透明矫治器,实现牙齿的逐步移动。这一技术的出现,使得正畸治疗更加美观和舒适,也推动了正畸行业向数字化方向发展。据统计,自隐形矫治器推出以来,全球正畸市场的规模逐年增长,越来越多的患者选择这种新型的矫治方式。
2010s,CBCT与口内扫描仪(如iTero)的出现实现了三维数据的采集。CBCT能够提供口腔的三维影像,弥补了传统二维X光片的不足,医生可以更准确地了解颌骨、牙齿的形态和位置关系。口内扫描仪则可以直接获取牙齿的三维模型,无需传统的取模方式,提高了患者的舒适度和数据采集的准确性(Fatani等, 不详)。
这些技术的应用,使得正畸诊断和治疗方案的设计更加精准和个性化。例如,在一些复杂的正畸病例中,医生可以利用CBCT和口内扫描仪的数据进行三维模拟分析,制定出更合理的治疗方案。
2020s,AI算法的深度整合成为了突破传统技术天花板的关键。AI技术在正畸领域的应用,如医学影像处理、治疗预测模型和患者沟通优化等方面,大大提高了正畸治疗的效率和精度。研究表明,AI辅助诊断效率可提升5倍,能够快速准确地分析患者的口腔数据,为医生提供诊断建议。同时,AI预测模型可以更精准地预测牙齿的移动轨迹,误差控制在极小范围内。这使得正畸治疗更加科学、高效,也降低了对医生经验的依赖(Dhingra等, 2022)。
这些技术迭代对正畸行业产生了深远的影响。从患者角度来看,治疗更加舒适、美观、高效;从医生角度来看,诊断和治疗方案的设计更加精准、科学;从行业角度来看,推动了正畸行业向数字化、智能化方向发展,为未来的发展奠定了坚实的基础。
- 正畸学与人工智能的融合
1.AI技术的赋能方向
人工智能技术在正畸学领域的应用,为解决传统正畸面临的挑战提供了强大的支持。其赋能方向主要体现在医学影像处理、治疗预测模型以及患者沟通优化等方面。
医学影像
在医学影像处理方面,AI技术发挥了巨大的作用。传统的正畸诊断主要依赖二维X光片,难以提供全面的三维空间信息。而AI技术可以实现CBCT三维重建和头影测量自动化。通过计算机视觉和深度学习算法,AI能够对CBCT影像进行精确分析,重建出口腔的三维模型,为医生提供更直观、准确的信息(Mercier等, 2024)。
有关于AI头影测量准确率的对比研究显示,AI头影测量的准确率可提升至95%以上,大大提高了诊断的精度。例如,在Dolphin Imaging系统中,它能够融合多模态数据,包括CBCT、口扫和面部3D数据,实现毫米级的三维重建,支持亚毫米级测量,为复杂病例的诊断和治疗提供了有力的支持(Dipalma等, 2023)。
治疗预测
治疗预测模型是AI技术在正畸领域的另一个重要应用方向。基于大量病例数据训练的AI算法,可以预测牙齿的移动轨迹。传统的正畸治疗方案设计往往依赖医生的经验,难以准确预测牙齿的移动情况。而AI预测模型可以根据患者的口腔数据和历史病例,模拟牙齿在不同矫治力作用下的移动过程,误差可控制在0.3mm以内。这使得医生能够提前制定更精准的治疗方案,提高治疗效果。例如,在一些大型正畸诊所中,利用AI预测模型为患者制定隐形矫治方案,能够更准确地控制牙齿移动,缩短治疗周期(Cho等, 2024)。
医患沟通
患者沟通优化也是AI技术的重要赋能方向。在正畸治疗中,患者对治疗方案的理解和配合至关重要。传统的医患沟通方式主要依靠医生的口头描述和二维图片,患者往往难以直观地理解治疗过程和预期效果。而AI技术的3D动画生成技术可以为患者生成直观的治疗动画,展示牙齿的移动过程和最终的治疗效果。这不仅增强了医患之间的共识,还提高了病例接受率(Dipalma等, 2023)。
据统计,使用3D动画生成技术进行医患沟通,病例接受率可提高30%。乐齿拍作为一款轻量化家庭健康管理工具,也利用了类似的技术,通过动态跟踪功能,让患者实时了解自己的矫正进度,提升了患者的依从性(Ryu等, 2023)。
- 人工智能的技术原理
从技术原理上看,医学影像处理主要基于计算机视觉和深度学习算法,通过对大量影像数据的学习和分析,实现对影像的自动识别和处理。治疗预测模型则是利用机器学习算法,对历史病例数据进行挖掘和分析,建立牙齿移动的预测模型。患者沟通优化则是结合计算机图形学和动画技术,生成直观的治疗动画。
综上所述,AI技术在医学影像处理、治疗预测模型和患者沟通优化等方面为正畸学带来了巨大的变革,提高了正畸治疗的效率和精度,改善了医患沟通效果。不同的AI正畸产品,如Dolphin Imaging和乐齿拍,在这些赋能方向上各有侧重,为正畸领域的发展提供了多样化的解决方案。
- 典型案例对比:Dolphin Imaging vs. 乐齿拍
- Dolphin Imaging:专业级正畸解决方案
Dolphin Imaging作为专业级正畸解决方案,在口腔正畸领域占据着重要地位,其独特的技术定位和显著的临床优势,使其成为处理复杂正畸病例的有力工具。
Dolphin imaging的操作界面截图
从技术定位来看,Dolphin Imaging致力于多模态数据融合,它整合了CBCT、口扫以及面部3D等多种数据来源。这种多模态数据的融合,能够为医生提供全面、精确的患者口腔及面部信息,覆盖复杂病例的全流程。无论是颌骨的形态结构、牙齿的排列情况,还是面部软组织的轮廓,都能在系统中得到清晰呈现,为后续的诊断和治疗设计提供坚实的数据基础。
其核心临床优势十分突出。首先,具备精准的3D手术模拟功能。在正颌手术或种植导板设计中,Dolphin Imaging能够实现高精度的模拟,正颌/种植导板设计误差可控制在<0.5mm。这意味着医生可以在术前通过模拟手术过程,准确规划手术方案,大大提高手术的成功率和安全性。其次,该系统搭建了多学科协作平台,促进了正畸、颌面外科、修复等多个学科之间的联合治疗。不同学科的医生可以在同一平台上共享患者信息,共同讨论治疗方案,实现资源的优化配置和治疗效果的最大化。
在操作流程方面,医生首先通过各种设备采集患者的CBCT、口扫和面部3D数据,并将其导入Dolphin Imaging系统。系统会自动对数据进行处理和分析,生成详细的三维模型和诊断报告。医生可以在系统中进行各种测量和分析,制定个性化的治疗方案。同时,利用系统的3D手术模拟功能,对手术方案进行反复优化。在治疗过程中,医生还可以通过系统实时监控患者的治疗进展,及时调整治疗方案。
- 乐齿拍:轻量化家庭健康管理工具
乐齿拍作为一款轻量化家庭健康管理工具,在口腔正畸领域开辟了新的市场方向,其独特的产品定位和显著的消费级市场价值,满足了大众对便捷口腔健康管理的需求。
从产品定位来看,乐齿拍聚焦于家用场景,以AI口扫和远程监控为核心功能,主要针对轻量级的口腔正畸需求。它打破了传统正畸依赖专业医疗机构的局限,让用户可以在家中自行完成口腔扫描,获取口腔健康信息。这种便携式的设备设计,大大降低了口腔检测的门槛,使得普通家庭也能够轻松进行口腔健康管理。
乐齿拍的产品图
乐齿拍的消费级市场价值体现在多个方面。首先,成本优势明显。单次扫描成本仅为传统方式的1/10,这使得更多消费者能够负担得起口腔检测服务。对于那些关注口腔健康但又不想花费大量金钱在专业检测上的人群来说,乐齿拍是一个经济实惠的选择。其次,动态跟踪功能提升了患者的依从性。在隐形矫正过程中,患者需要定期到医院进行复查,以确保矫正进度符合预期。乐齿拍通过动态跟踪功能,让患者可以实时了解自己的矫正进度,及时发现问题并与医生沟通。研究表明,使用乐齿拍进行矫正管理,矫正周期可缩短15%,这不仅节省了患者的时间和精力,还提高了矫正效果。
乐齿拍软件页面图
从用户行为数据来看,乐齿拍的出现改变了用户的口腔健康管理习惯。根据乐齿拍用户调研结果,家庭自检依从性提升了40%。这说明用户对这种便捷的口腔检测方式接受度较高,愿意主动参与到口腔健康管理中来。此外,乐齿拍还为医生提供了更多的患者数据,有助于医生更好地了解患者的口腔情况,制定更个性化的治疗方案。
在典型应用方面,乐齿拍适用于隐形矫正进度监控和儿童早期干预筛查。对于正在进行隐形矫正的患者,乐齿拍可以实时监测牙齿的移动情况,及时发现矫正过程中的问题,确保矫正效果。对于儿童来说,早期干预是预防和治疗口腔问题的关键。乐齿拍可以帮助家长及时发现孩子的口腔问题,如牙齿排列不齐、咬合异常等,并及时采取干预措施,避免问题进一步恶化。
综上所述,乐齿拍以其独特的产品定位和显著的消费级市场价值,为口腔正畸领域带来了新的活力。它不仅满足了大众对便捷口腔健康管理的需求,还为医生提供了更多的患者数据,促进了口腔正畸行业的发展。
- 对比分析
维度 | Dolphin Imaging | 乐齿拍 |
精度 | 毫米级三维重建,支持亚毫米级测量,能精准呈现颌骨、牙齿及软组织的细微结构,适用于复杂病例的精确诊断和治疗设计。 | 厘米级筛查,侧重趋势分析,可大致了解牙齿排列和矫正进度的变化趋势。 |
适用场景 | 主要用于复杂病例诊断、学术研究,如骨性错合畸形矫治、儿童生长发育评估等,为专业正畸医生提供全面精准的信息。 | 聚焦家庭自检、轻量级矫正管理,如隐形矫正进度监控、儿童早期干预筛查,方便患者在家中进行口腔健康管理。 |
部署成本 | 需专业硬件与培训,成本较高,包括设备采购、维护以及医生的专业培训费用。 | 家用设备+云端服务,成本较低,单次扫描成本仅为传统方式的1/10,降低了口腔检测门槛。 |
数据处理能力 | 可融合多模态数据,进行深度分析和处理,为多学科协作提供有力支持。 | 主要处理口扫数据,提供简洁直观的分析结果,便于患者理解。 |
从差异化竞争策略来看,Dolphin Imaging凭借高精度和强大的数据处理能力,在专业医疗市场占据优势;乐齿拍则以低成本和便捷性,开拓了消费级市场。
二者在市场上具有一定的互补性,Dolphin Imaging可为乐齿拍筛查出的复杂病例提供专业的诊断和治疗方案;乐齿拍则能为Dolphin Imaging扩大患者群体,将潜在患者引导至专业医疗机构。这种协同发展有助于加速正畸领域的普惠化与智能化进程。
- 未来发展方向
- 精准治疗深化
在人工智能时代,口腔正畸的精准治疗深化主要体现在AI驱动的生物力学模型优化以及多组学数据整合两个方面。
AI驱动的生物力学模型优化矫治力控制是精准治疗的关键。传统正畸治疗中,矫治力的施加往往依赖医生的经验,难以做到精准控制。而借助AI技术,可以构建生物力学模型,模拟牙齿在不同矫治力作用下的移动过程。例如,自适应隐形矫治器设计,通过AI分析患者牙齿的具体情况和生物力学特性,精准调整矫治力的大小、方向和时间,实现个性化的牙齿移动控制。这种精准的矫治力控制不仅能提高治疗效果,还能缩短治疗周期,减少患者的痛苦。
多组学数据整合实现个性化预测是精准治疗的另一个重要方向。多组学数据包括基因、影像和临床等多方面信息。基因数据可以揭示患者的遗传特征,预测牙齿移动的潜力和速度;影像数据能提供牙齿和颌骨的精确形态和结构信息;临床数据则记录了患者的病史、口腔健康状况等。将这些多组学数据整合起来,利用AI算法进行分析,可以为每个患者制定更加个性化的治疗方案。例如,通过分析基因数据,预测患者对某种矫治力的反应,从而调整治疗方案,提高治疗的精准性(Tüfekçi等, 2025)。
从技术突破方向来看,未来AI技术可能会与更多先进技术相结合,如纳米技术、生物材料技术等。纳米技术可以用于制造更加精准的矫治器械,生物材料技术则可以开发出更适合患者的矫治材料。此外,随着机器学习算法的不断发展,AI模型的预测能力将进一步提高,为口腔正畸的精准治疗提供更强大的支持。
总之,精准治疗深化将是口腔正畸未来发展的重要趋势,通过生物力学模型优化和多组学数据整合,有望实现更加个性化、精准化的正畸治疗。
- 行业生态重构
在人工智能的推动下,口腔正畸行业生态正经历着深刻的重构,主要体现在服务下沉和医生角色转型,同时产业链也呈现出相应的变化趋势。
服务下沉是行业发展的重要方向。随着AI技术在正畸领域的应用,正畸服务不再局限于大型医院和专业诊所。政策鼓励基层医疗服务的发展,使得正畸服务能够下沉至社区诊所。数据显示,社区诊所开展正畸服务的比例逐年上升。家庭健康管理工具如乐齿拍的出现,让患者可以在家中进行初步的口腔检测和健康管理,为社区诊所提供了更多的患者资源。这不仅提高了正畸服务的可及性,也降低了患者的治疗成本(Mahto等, 2022)。
医生角色也在发生转型。传统上,医生是正畸方案的执行者。而在AI时代,医生逐渐转变为“AI系统监督者”。AI技术能够提供精准的诊断和治疗建议,医生的主要职责变为对AI系统的输出结果进行审核和调整,确保治疗方案的安全性和有效性。
Reference
Cho, S. J., Moon, J.-H., Ko, D.-Y., Lee, J.-M., Park, J.-A., Donatelli, R. E., & Lee, S.-J. (2024). Orthodontic treatment outcome predictive performance differences between artificial intelligence and conventional methods. The Angle Orthodontist, 94(5), 557–565. https://doi.org/10.2319/111823-767.1
Dhingra, A., Palomo, J. M., Stefanovic, N., Eliliwi, M., & Elshebiny, T. (2022). Comparing 3D Tooth Movement When Implementing the Same Virtual Setup on Different Software Packages. Journal of Clinical Medicine, 11(18), 5351. https://doi.org/10.3390/jcm11185351
Dipalma, G., Inchingolo, A. D., Inchingolo, A. M., Piras, F., Carpentiere, V., Garofoli, G., Azzollini, D., Campanelli, M., Paduanelli, G., Palermo, A., & Inchingolo, F. (2023). Artificial Intelligence and Its Clinical Applications in Orthodontics: A Systematic Review. Diagnostics, 13(24), 3677. https://doi.org/10.3390/diagnostics13243677
Fatani, E., Alkhamsi, H. B., Arishi, F. O., Altaweel, S. M., Asiri, M. A., Albuni, W. W., & Baseer, M. A. (不详). Impact of Invisalign G-series Updates on Improving Predicted Outcomes: A Retrospective Study. Cureus, 15(12), e50615. https://doi.org/10.7759/cureus.50615
Mahto, R. K., Kafle, D., Giri, A., Luintel, S., & Karki, A. (2022). Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform. BMC Oral Health, 22, 132. https://doi.org/10.1186/s12903-022-02170-w
Mercier, J.-P., Rossi, C., Sanchez, I. N., Renovales, I. D., Sahagún, P. M.-P., & Templier, L. (2024). Reliability and accuracy of Artificial intelligence-based software for cephalometric diagnosis. A diagnostic study. BMC Oral Health, 24, 1309. https://doi.org/10.1186/s12903-024-05097-6
Ryu, J., Kim, Y.-H., Kim, T.-W., & Jung, S.-K. (2023). Evaluation of artificial intelligence model for crowding categorization and extraction diagnosis using intraoral photographs. Scientific Reports, 13, 5177. https://doi.org/10.1038/s41598-023-32514-7
Tüfekçi, E., Carrico, C. K., Gordon, C. B., & Lindauer, S. J. (2025). How AI ‐Driven Root and Bone Predictions Can Assist Clear Aligner Treatment Planning. Orthodontics & Craniofacial Research, ocr.12921. https://doi.org/10.1111/ocr.12921
Xie, Q., Peilun, L., Zhitao, Z., Guo, B., Ke, S., Xinxin, L., Hu, T. T., Heng, Y., Duohong, Z., & Chi, Y. (2023). Fabrication of three-dimensional orthodontic force detecting brackets and preliminary clinical test for tooth movement simulation. Heliyon, 9(9), e19852. https://doi.org/10.1016/j.heliyon.2023.e19852
Yao, K., Xie, Y., Xia, L., Wei, S., Yu, W., & Shen, G. (2023). The Reliability of Three-Dimensional Landmark-Based Craniomaxillofacial and Airway Cephalometric Analysis. Diagnostics, 13(14), 2360. https://doi.org/10.3390/diagnostics13142360
(中商产业研究院)
https://www.fxbaogao.com/aisearch/detail?sessionId=2503274637116174