题目描述
标题:表格计算
某次无聊中, atm 发现了一个很老的程序。这个程序的功能类似于 Excel ,它对一个表格进行操作。
不妨设表格有 n 行,每行有 m 个格子。
每个格子的内容可以是一个正整数,也可以是一个公式。
公式包括三种:
- SUM(x1,y1:x2,y2) 表示求左上角是第 x1 行第 y1 个格子,右下角是第 x2 行第 y2 个格子这个矩形内所有格子的值的和。
- AVG(x1,y1:x2,y2) 表示求左上角是第 x1 行第 y1 个格子,右下角是第 x2 行第 y2 个格子这个矩形内所有格子的值的平均数。
- STD(x1,y1:x2,y2) 表示求左上角是第 x1 行第 y1 个格子,右下角是第 x2 行第 y2 个格子这个矩形内所有格子的值的标准差。
标准差即为方差的平方根。
方差就是:每个数据与平均值的差的平方的平均值,用来衡量单个数据离开平均数的程度。
公式都不会出现嵌套。
如果这个格子内是一个数,则这个格子的值等于这个数,否则这个格子的值等于格子公式求值结果。
输入这个表格后,程序会输出每个格子的值。atm 觉得这个程序很好玩,他也想实现一下这个程序。
「输入格式」
第一行两个数 n, m 。
接下来 n 行输入一个表格。每行 m 个由空格隔开的字符串,分别表示对应格子的内容。
输入保证不会出现循环依赖的情况,即不会出现两个格子 a 和 b 使得 a 的值依赖 b 的值且 b 的值依赖 a 的值。
「输出格式」
输出一个表格,共 n 行,每行 m 个保留两位小数的实数。
数据保证不会有格子的值超过 1e6 。
「样例输入」
3 2
1 SUM(2,1:3,1)
2 AVG(1,1:1,2)
SUM(1,1:2,1) STD(1,1:2,2)
「样例输出」
1.00 5.00
2.00 3.00
3.00 1.48
「数据范围」
对于 30% 的数据,满足: n, m <= 5
对于 100% 的数据,满足: n, m <= 50
资源约定:
峰值内存消耗(含虚拟机) < 512M
CPU消耗 < 2000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。
思路
本题的难点在于表达式提供的区间内可能存在嵌套的表达式导致无法直接计算,所以我们用一个now_cur来计算当前数组内的确定值,在now_cur不等于n*m为止一直循环遍历数组。
由于数组中的值均为正值,所以表达式的存储可以用负数存储。
用一个字符串列表存放表达式,在数组中对应表达式的值以-(下标+1)来表示,如第一个表达式在数组中存储为-1。
对每一个表达式先检查该区间是否均为确定值,执行完表达式后刷新数组值。
代码
import java.io.BufferedInputStream;
import java.io.File;
import java.util.ArrayList;
import java.util.Scanner;
public class Main{
static int n,m;//行,列
static double arr[][]=null;//存储数组
static int now_cur=0;//当前确定值的个数
static ArrayList<String> list=new ArrayList<String>();//记录表达式的列表
public static void main(String[] args) throws Exception {
Scanner sc=new Scanner(new BufferedInputStream(System.in));
n=sc.nextInt();
m=sc.nextInt();
sc.nextLine();//读取一位空格
arr=new double [n][m];
int cnt=-1;//数组内表达式的值,从-1开始,对应到list里面的第一个表达式
for(int i=0;i<n;i++){
String s[]=sc.nextLine().split(" ");
for(int j=0;j<m;j++){
char ch=s[j].charAt(0);
if(ch=='S'||ch=='A') {//如果为表达式
arr[i][j]=cnt--;
list.add(s[j]);
}
else {
arr[i][j]=Integer.valueOf(s[j]);
now_cur++;
}
}
}
while(now_cur!=(n*m))//当前数组内的确定值数量为n*m时,终止循环
{
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(arr[i][j]<0){
String s=list.get((int) (Math.abs(arr[i][j])-1));
String top3=s.substring(0,3);//字符串前三位
String part[]=s.split(",");
//分别取出表达式中的四个坐标
int pos1=Integer.valueOf(part[0].split("\\(")[1]);
int pos2=Integer.valueOf(part[1].split(":")[0]);
int pos3=Integer.valueOf(part[1].split(":")[1]);
int pos4=Integer.valueOf(part[2].split("\\)")[0]);
switch(top3){//分别对每个表达式进行运算,将结果替换数组内的值,now_cur加1
case "STD":
if(check(pos1,pos2,pos3,pos4)) {
arr[i][j]=Std(pos1,pos2,pos3,pos4);
now_cur++;
}
break;
case "SUM":
if(check(pos1,pos2,pos3,pos4)) {
arr[i][j]=Sum(pos1,pos2,pos3,pos4);
now_cur++;
}
break;
case "AVG":
if(check(pos1,pos2,pos3,pos4)) {
arr[i][j]=Avg(pos1,pos2,pos3,pos4);
now_cur++;
}
break;
}
}
}
}
}
print();
}
public static double Std(int pos1,int pos2,int pos3,int pos4){//计算标准差
double sum=0,avg=Avg(pos1,pos2,pos3,pos4),cnt=0;
for(int i=pos1-1;i<=pos3-1;i++)
for(int j=pos2-1;j<=pos4-1;j++){
double temp=Math.pow((arr[i][j]-avg), 2);
sum+=temp;
cnt++;
}
return Math.sqrt(sum/cnt);
}
public static double Sum(int pos1,int pos2,int pos3,int pos4){//求和
double sum=0;
for(int i=pos1-1;i<=pos3-1;i++)
for(int j=pos2-1;j<=pos4-1;j++)
sum+=arr[i][j];
return sum;
}
public static double Avg(int pos1,int pos2,int pos3,int pos4){//求平均数
double sum=0,cnt=0;
for(int i=pos1-1;i<=pos3-1;i++)
for(int j=pos2-1;j<=pos4-1;j++){
sum+=arr[i][j];
cnt++;
}
return sum/cnt;
}
public static boolean check(int pos1,int pos2,int pos3,int pos4){
//遍历区间,确定是否全部为数值
for(int i=pos1-1;i<=pos3-1;i++)
for(int j=pos2-1;j<=pos4-1;j++)
if(arr[i][j]<0)//如果区间内存在表达式,则返回false
return false;
return true;
}
public static void print(){//测试用的输出函数
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++){
if(arr[i][j]<0){
int pos=Math.abs((int)arr[i][j])-1;
System.out.print(list.get(pos)+" ");
}
else {
System.out.printf("%.2f",arr[i][j]);
System.out.print(" ");
}
}
System.out.println();
}
}
}