学习笔记2

TensorFlow 是由 Google Brain 团队为深度神经网络(DNN)开发的功能强大的开源软件库,还有很多其他的深度学习库,如 PyTorch、Theano、Caffe 、PaddlePaddle

Keras 是一个用 Python 编写的高级神经网络 API,

它能够以 TensorFlow, CNTK, 或者 Theano 作为后端运行。

keras深度学习API

图像变成numpy对象,图像处理变成对数组处理,np.asarray()方法

卷积网络笔记

神经网络区别于卷积神经网络,前者对图像进行整体处理,一个flatten后的图像128个数,为了得到最后的结果,在128个数与结果之间添加相乘的几个矩阵,而后者多次使用卷积核与池化(pooling,下采样缩小图像尺寸)来得到想要的结果。

在特征图的选用,更多数的应用选择same,通过给图像边缘补零实现特征提取后的特征图大小与原图一致,而不是valid会缩小特征图尺寸,这里可以应用残差网络用来弥补丢失的原图信息。

通过对比代码,keras比tensorflow更简洁好用。

人工智能两大部署

原装部署,即人工智能芯片的部署,它有自己的神经网络编译器,比较省心。

嵌入式部署,一个难点,需要考虑芯片内存与是否支持池化,查看硬件参数,支持哪些算子。

=================由此在我们的树莓派项目应该也需要查找适配的编译器及适配算子?

计算机视觉

讨论的问题可分两类,分类----是什么,回归-----在哪里,这两个问题的关键是损失函数的不同。

总结

深度学习模型的结构大同小异,重点在于参数的调配。

在确定算法的参数之前,需要考虑树莓派的硬件参数是否能够支持。

接下来还是要把paddle上的项目模型学习一下,了解如何开发树莓派。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值