TensorFlow 是由 Google Brain 团队为深度神经网络(DNN)开发的功能强大的开源软件库,还有很多其他的深度学习库,如 PyTorch、Theano、Caffe 、PaddlePaddle等
Keras 是一个用 Python 编写的高级神经网络 API,
它能够以 TensorFlow, CNTK, 或者 Theano 作为后端运行。
keras深度学习API
图像变成numpy对象,图像处理变成对数组处理,np.asarray()方法
卷积网络笔记
神经网络区别于卷积神经网络,前者对图像进行整体处理,一个flatten后的图像128个数,为了得到最后的结果,在128个数与结果之间添加相乘的几个矩阵,而后者多次使用卷积核与池化(pooling,下采样缩小图像尺寸)来得到想要的结果。
在特征图的选用,更多数的应用选择same,通过给图像边缘补零实现特征提取后的特征图大小与原图一致,而不是valid会缩小特征图尺寸,这里可以应用残差网络用来弥补丢失的原图信息。
通过对比代码,keras比tensorflow更简洁好用。
人工智能两大部署
原装部署,即人工智能芯片的部署,它有自己的神经网络编译器,比较省心。
嵌入式部署,一个难点,需要考虑芯片内存与是否支持池化,查看硬件参数,支持哪些算子。
=================由此在我们的树莓派项目应该也需要查找适配的编译器及适配算子?
计算机视觉
讨论的问题可分两类,分类----是什么,回归-----在哪里,这两个问题的关键是损失函数的不同。
总结
深度学习模型的结构大同小异,重点在于参数的调配。
在确定算法的参数之前,需要考虑树莓派的硬件参数是否能够支持。
接下来还是要把paddle上的项目模型学习一下,了解如何开发树莓派。