实测安装魔塔的步骤

因为部分模型必须在linux环境中才能运行,所以python也要安装linux环境中。

魔塔框架实际就是python的模块:modelscope

所以需要依赖python语言的运行环境,这里使用Miniconda(可以管理python虚拟环境的一个命令行工具)。

魔塔社区里面的安装教程的可选性很多,乱花迷眼,所以这里是一个简略步骤。

一、安装conda

1、进入conda官网(Download Now | Anaconda),下载linux版本的安装文件Miniconda3-latest-Linux-x86_64.sh。

2、运行这个安装脚本。

3、根据提示完成安装。

4、安装完成后在命令行前面会有一个(base)标志。脚本会将启动命令写入~/.bashrc,如果本次没有进入conda环境,可以重新进行一个命令行。

退出conda环境:conda deactivate

删除虚拟环境:conda env remove --name 环境名

二、安装魔塔

(参考:https://zhuanlan.zhihu.com/p/631529004

1、创建一个虚拟环境:conda create -n modelscope python=3.8

2、进入环境:conda activate modelscope

3、安装魔塔Lib:pip install modelscope

!!!魔塔Lib安装已经完成,以下为安装nlp模型的特有步骤,执行以完成验证。!!!

4、安装torch:pip3 install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple

torch模块主要用于自然语言处理,因为很大,所以用国内源单独安装,否则如果后面自动安装可能非常慢。

5、安装自然语言处理的模型:pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html

6、使用分词处理进行测试:python -c "from modelscope.pipelines import pipeline;print(pipeline('word-segmentation')('今天天气不错,适合 出去游玩'))"

分词成功,就代表安装成功。然后就是如果想要使用哪个模型,就需要再下载该模型,然后写python程序,即重复5、6步骤。

难点:魔塔Lib的安装比较简单,难点在于模型的安装,不同模型可能有不同依赖和版本要求,所以每个模型可能都需要单独一个环境。

安装魔塔Lib完成,后续是其他模型的补充。

三、使用魔塔的其他模型

1、SenseVoice项目

自然语言处理,或者说语音识别模型。

1)环境安装

参考:魔搭社区

下载funasr模块(语音识别):

pip3 install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple

pip3 install funasr -i https://pypi.tuna.tsinghua.edu.cn/simple

2)代码示例

将下属代码保存为funasr.py,然后运行python funasr.py

from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess

model_dir = "iic/SenseVoiceSmall"


model = AutoModel(
    model=model_dir,
    trust_remote_code=True,
    remote_code="./model.py",
    vad_model="fsmn-vad",
    vad_kwargs={"max_single_segment_time": 30000},
    device="cuda:0",
)

# en
print("model path: "+model.model_path+"\n")
res = model.generate(
    input=f"{model.model_path}/example/en.mp3",
    cache={},
    language="auto",  # "zn", "en", "yue", "ja", "ko", "nospeech"
    use_itn=True,
    batch_size_s=60,
    merge_vad=True,  #
    merge_length_s=15,
)
text = rich_transcription_postprocess(res[0]["text"])
print("res: "+text+"\n")

print("ok"+"\n")

(识别结果:The tribal chieftain called for the boy and presented him with 50 pieces of gold.)

3)模型

模型数据由上述代码自动下载。

下载位置:/home/用户名/.cache/modelscope/hub/iic/SenseVoiceSmall

### 如何为小米路由器OpenWRT #### 准备工作 为了成功地将OpenWRT入到小米路由器中,需提前准备好必要的工具和软件。这包括但不限于一台电脑用于操作、一根网线连接至路由器以及确保拥有最新的Breed固件版本和支持的小米路由器型号列表[^1]。 #### 开启Telnet服务 通过特定命令或按钮激活隐藏模式下的telnet功能对于后续步骤至关重要。通常情况下,在浏览器地址栏输入`http://miwifi.com`进入管理界面后找到对应的选项来启用此特性;而对于某些特殊机型,则可能需要借助第三方应用或者按照官方文档指示完成设置过程[^2]。 #### 使用FTP上传文件 一旦开启了上述提到的服务之后就可以利用FTP客户端把breed.bin或者其他所需的镜像放置于设备内部存储空间当中去了。这里推荐使用FileZilla这类简单易用的应用程序来进行传输作业,并确认好目标路径是否正确无误[^3]。 #### 写Breed引导程序 当所有准备工作都已就绪之时便可以着手处理最核心的部分——即替换原有的bootloader部分为更加灵活可控的新版breed了。具体做法是在断电状态下按住reset键不放直到电源灯亮起再松手即可自动加载新安装好的环境。 #### 完成OpenWRT系统的部署 最后一步就是正式向flash芯片灌输openwrt.img映像包从而彻底改变原有操作系统架构成为基于Linux内核构建而成的强大网络平台之一。值得注意的是整个过程中要保持稳定供电以免造成不可逆损坏风险存在。 ```bash # 示例代码:通过TFTP服务器发送OpenWRT固件给路由器 tftp -l openwrt-trx-factory.bin -r /dev/mtdblock4 192.168.1.1 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值