Fliptile POJ - 3279 枚举

1 篇文章 0 订阅

一、内容

题意:给定一副只有01的图,翻转某个点会将本点和上下左右4个点都翻转(1变0,0变1)求最少翻转次数使所格子为0,求翻转的状态。

二、思路

  • 当我们翻转一个格子的时候,会影响上下左右的格子,所以我们以上一行为基础进行翻转,当上一行为1时,就反转本行的格子,这样就不会影响上一行的其他格子,当翻转完成后,只需要看最后一行是否全部是0即可,若是代表次方案可行。
  • 我们枚举第一行的状态,2m种情况,根据第一行的状态来进行各种情况的翻转。
  • 若最后一行全是0,且翻转次数小于以前的方案就可以更新答案。
  • 用了goto语句可以跳出循环,相等于小小的剪枝。

三、代码

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const int N = 15;
const int INF = 0x3f3f3f3f;
//g是原图 ans是翻滚的答案 tem是各种翻滚情况, tg是翻滚后的图 
int g[N][N], ans[N][N], tem[N][N], tg[N][N], n, m, ansNum, temNum;
int dx[5] = {1, 0, 0, -1, 0};
int dy[5] = {0, 1, -1, 0, 0};
bool ok(int x, int y) {
	if (x < 0 || y < 0 || x >= n || y >= m) return false;
	return true;
} 
void flip(int x, int y) {
	//翻滚5个格子
	for (int i = 0; i < 5; i++) {
		int fx = x + dx[i];
		int fy = y + dy[i];
		if (ok(fx, fy)) {
			tg[fx][fy] = 1 - tg[fx][fy];
		}
	} 
	temNum++;
	tem[x][y] = 1;
}

int main() {
	scanf("%d%d", &n, &m);
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < m; j++) {
			scanf("%d", &g[i][j]);
		}
	}	
	ansNum = INF;//最终的翻滚次数 
	//枚举第一行的状态
	int i = 0;
	T: for (; i < (1 << m); i++) {
		memset(tem, 0, sizeof tem);
		memcpy(tg, g, sizeof g);//把gcopy到tg上面 
		temNum = 0; //某种状态的翻滚次数 
		for (int j = 0; j < m; j++) {
			//根据第一行状态进行反转
			if (i & (1 << j)) {
				//如果该位上是1
				flip(0, j);
			} 
		}
		//对第2-m行进行反转 每次根据上一行的状态进行反转
		 for (int j = 1; j < n; j++) {
		 	for (int k = 0; k < m; k++) {
		 		if (tg[j - 1][k]) {
		 			//如果上一行的该位置是1 那么对本行的这个位置进行翻滚
					flip(j, k);
				 }
				 if (temNum >= ansNum) {
				 	i++;
					goto T;
				 }
			 }
		 } 
		 //对最后一行进行检查看是否全部是0若全部是0那么代表此方案可行
		 int ok = 1;
		 for (int j = 0; j < m; j++) {
		 	if (tg[n- 1][j]) {
		 		ok =0;
		 		break;
			 }
		 } 
		 if (ok && temNum < ansNum) {
		 	//若比以前的次数少那么更新答案
			ansNum = temNum;
			memcpy(ans, tem, sizeof tem); 
		 }
	} 
	if (ansNum == INF) {
		printf("IMPOSSIBLE");
	} else {
		for (int i = 0; i < n; i++) {
			printf("%d", ans[i][0]);
			for (int j = 1; j < m; j++) {
				printf(" %d", ans[i][j]);
			}
			printf("\n");
		}
	}
	return 0;
} 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值