NOIP进制转换历年真题2007-2018

NOIP进制转换题

涉及进制转换加进制计算的题目
  1. (2070) 16 + (34) 8 的结果是()。
    A. (8332) 10
    B. (208A) 16
    C. (100000000110) 2
    D. (20212) 8
    解析:
    先把16进制得2070转换为2进制的数:0010000001110000
    然后把8进制得34转换为2进制的数:11100
    然后计算0010 0000 0111 0000+1 1100 = 0010 0000 1000 1100
    注意最好每四位留一点空隙,这样容易观察和计算
    然后把 0010 0000 1000 1100 分别跟题中的ABCD做比较,然后得出最终的答案
    十进制8332,十六进制208C,八进制20214

  2. (2008)10+(5B)16的结果是()。
    A. (833)16
    B. (2089)10
    C. (4163)8
    D. (100001100011)2
    解析:
    10进制2008转换为2进制为11111011000
    16进制5B转换为2进制为1011011
    111 1101 1000 + 101 1011 = 1000 0011 0011
    100000110011 转换为16进制为833
    100000110011 转换为10进制为2099
    100000110011 转换为 8进制为4063

  3. 在二进制下,1011001 + () = 1100110。
    A. 1011
    B. 1101
    C. 1010
    D. 1111
    解析:
    110 0110-101 1001 = 1101
    跟十进制的减法原理相同,注意借位(二借一)

  4. 二进制数00100100和00010101的和是( )。
    A. 00101000
    B. 001010100
    C. 01000101
    D. 00111001
    解析:
    0010 0100 + 0001 0101 = 0011 1001
    跟十进制加法相同,注意进位(逢二进一)

  5. 二进制数 00100100 和 00010100 的和是( )。
    A. 00101000
    B. 01000001
    C. 01000100
    D. 00111000
    解析:
    0010 0100 + 0001 0100 = 0011 1000

  6. 二进制数 00101100 和 00010101 的和是( )。
    A. 00101000
    B. 01000001
    C. 01000100
    D. 00111000
    解析:
    0010 1100 + 0001 0101 = 01000001

仅涉及进制转换的题目
  1. 与十进制数1770对应的八进制数是( )。
    A. 3350
    B. 3351
    C. 3352
    D. 3540
    解析:
    1770转换为2进制为:110 1110 1010
    2进制11011101010转换为8进制为:3352

  2. 与十进制数28.5625相等的四进制数是( )。
    A. 123.21
    B. 131.22
    C. 130.22
    D. 130.21
    解析:
    整数部分28转换为4进制:130 采用除4取余的方法
    小数部分5624转换为4进制为:21 采用乘4取整的方法
    小数部分:0.5625 (小数部分乘4取整)
    0.5625 * 4=2.25 取2
    0.25 * 4=1 取1
    最后小数部分就是21

  3. 十进制小数125.125对应的8进制数是
    A. 100.1
    B. 175.175
    C. 175.1
    D. 100.175
    解析:
    对整数部分125进行除8取余得:175
    对小数部分0.125进行乘8取整得:1
    最后的答案是:175.1

  4. 在十六进制表示法中,字母 A 相当于十进制中的( )。
    A. 9
    B. 10
    C. 15
    D. 16
    解析:
    A-F分别代表了10-15

  5. 下列四个不同进制的数中,与其它三项数值上不相等的是( )。
    A. (269)16
    B. (617)10
    C. (1151)8
    D. (1001101011)2
    解析:
    16进制的269 转换为2进制为: 1001101001
    10进制的617 转换为2进制为: 1001101001
    8进制的1151 转换为2进制为: 1001101001

  6. 二进制数 11.01 在十进制下是( )。
    A. 3.25
    B. 4.125
    C. 6.25
    D. 11.125
    解析:
    整数部分11转换为10进制为:1*(20)+1*(21) = 3
    小数部分0.1转换为10进制为:0*(2^-1) +1*(2^-2)=0.25

  7. 十六进制数9A在()进制下是232。
    A. 四
    B. 八
    C. 十
    D. 十二
    解析:
    先把9A换算成2进制,然后再把2进制转换成相应的进制
    16进制的9A 转换为2进制为:10011010
    2进制的10011010 转换为4进制为:2122
    2进制的10011010 转换为8进制为:232
    2进制的10011010 转换为10进制为:154

  8. 与二进制小数 0.1 相等的十六进制数是( )
    A. 0.8
    B. 0.4
    C. 0.2
    D. 0.1
    解析:
    先补足4位使0.1变成0.1000
    然后根据2进制的1000得出16进制为8
    因此小数部分就是0.8

  9. 与二进制小数 0.1 相等的八进制数是( )。
    A. 0.8
    B. 0.4
    C. 0.2
    D. 0.1
    解析:
    先补足3位使0.1变成0.100
    然后根据2进制的100得出8进制为4
    因此小数部分为0.4

  10. 十进制小数 13.375 对应的二进制数是( )。
    A. 1101.011
    B. 1011.011
    C. 1101.101
    D. 1010.01
    解析:
    整数13 除 2 取余得1101 16进制表示D
    小数375 乘 2 取整得 011 0.3752 = 0.75
    0.75
    2 = 1.5 0.5*2 =1
    合并起来:011

  11. 设X、Y、Z分别代表三进制下的一位数字,若等式XY + ZX = XYX在三进制下成立,那么同样在三进制下,等式XY * ZX = ( )也成立。
    A. YXZ
    B. ZXY
    C. XYZ
    D. XZY
    解析:
    先假设X、Y、Z分别为0,1,2或0,2,1或1,0,2分别代入XY + ZX = XYX看是否成立,成立之后看XY * ZX的结果跟选项A、B、C、D之间的一个比较

涉及进制转换加进制计算的题目
  1. 一个正整数在二进制下有100位,则它在十六进制下有( )位。
    A. 7
    B. 13
    C. 25
    D. 不能确定
    解析:
    一个16进制数,其中的每一位可以由4个二进制位来表示,8进制数的每一位可以由3个二进制位来表示

  2. 如果 256 种颜色用二进制编码来表示,至少需要( )位。
    A. 6
    B. 7
    C. 8
    D. 9
    解析:
    2的多少次方为256,256可以由多少个2进制数来表示

  3. 一个自然数在十进制下有n位,则它在二进制下的位数与( )最接近。
    A. 5n
    B. n * log(2 10)
    C. 10 * log(2 n)
    D. 10^n * log(2 n)
    解析:
    反向思考,一个10进制数是怎么由2进制来表现的,10乘以2为底,n的对数

  4. 把 64 位非零浮点数强制转换成32 位浮点数后,不可能 ()。
    A. 大于原数
    B. 小于原数
    C. 等于原数
    D. 与原数符号相反
    解析:
    因为把 64 位非零浮点数强制转换成 32 位浮点数后,只是丢弃了更高的数据存储精度(有效数字位数少了),不会影响数值的符号及前7位有效数字的。

  5. 下列各无符号十进制整数中,能用八位二进制表示的数中最大的是( )。
    A. 296
    B. 133
    C. 256
    D. 199
    解析:
    先把以上的10进制表示成2进制,然后截取后8位,看后8位的2进制数谁大。
    10进制的296 转换为2进制为:1 0010 1000
    10进制的133 转换为2进制为: 1000 0101
    10进制的256 转换为2进制为:1 0000 0000
    10进制的199 转换为2进制为: 1100 0111
    由此可知,最大的是199

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值