NOIP进制转换题
涉及进制转换加进制计算的题目
-
(2070) 16 + (34) 8 的结果是()。
A. (8332) 10
B. (208A) 16
C. (100000000110) 2
D. (20212) 8
解析:
先把16进制得2070转换为2进制的数:0010000001110000
然后把8进制得34转换为2进制的数:11100
然后计算0010 0000 0111 0000+1 1100 = 0010 0000 1000 1100
注意最好每四位留一点空隙,这样容易观察和计算
然后把 0010 0000 1000 1100 分别跟题中的ABCD做比较,然后得出最终的答案
十进制8332,十六进制208C,八进制20214 -
(2008)10+(5B)16的结果是()。
A. (833)16
B. (2089)10
C. (4163)8
D. (100001100011)2
解析:
10进制2008转换为2进制为11111011000
16进制5B转换为2进制为1011011
111 1101 1000 + 101 1011 = 1000 0011 0011
100000110011 转换为16进制为833
100000110011 转换为10进制为2099
100000110011 转换为 8进制为4063 -
在二进制下,1011001 + () = 1100110。
A. 1011
B. 1101
C. 1010
D. 1111
解析:
110 0110-101 1001 = 1101
跟十进制的减法原理相同,注意借位(二借一) -
二进制数00100100和00010101的和是( )。
A. 00101000
B. 001010100
C. 01000101
D. 00111001
解析:
0010 0100 + 0001 0101 = 0011 1001
跟十进制加法相同,注意进位(逢二进一) -
二进制数 00100100 和 00010100 的和是( )。
A. 00101000
B. 01000001
C. 01000100
D. 00111000
解析:
0010 0100 + 0001 0100 = 0011 1000 -
二进制数 00101100 和 00010101 的和是( )。
A. 00101000
B. 01000001
C. 01000100
D. 00111000
解析:
0010 1100 + 0001 0101 = 01000001
仅涉及进制转换的题目
-
与十进制数1770对应的八进制数是( )。
A. 3350
B. 3351
C. 3352
D. 3540
解析:
1770转换为2进制为:110 1110 1010
2进制11011101010转换为8进制为:3352 -
与十进制数28.5625相等的四进制数是( )。
A. 123.21
B. 131.22
C. 130.22
D. 130.21
解析:
整数部分28转换为4进制:130 采用除4取余的方法
小数部分5624转换为4进制为:21 采用乘4取整的方法
小数部分:0.5625 (小数部分乘4取整)
0.5625 * 4=2.25 取2
0.25 * 4=1 取1
最后小数部分就是21 -
十进制小数125.125对应的8进制数是
A. 100.1
B. 175.175
C. 175.1
D. 100.175
解析:
对整数部分125进行除8取余得:175
对小数部分0.125进行乘8取整得:1
最后的答案是:175.1 -
在十六进制表示法中,字母 A 相当于十进制中的( )。
A. 9
B. 10
C. 15
D. 16
解析:
A-F分别代表了10-15 -
下列四个不同进制的数中,与其它三项数值上不相等的是( )。
A. (269)16
B. (617)10
C. (1151)8
D. (1001101011)2
解析:
16进制的269 转换为2进制为: 1001101001
10进制的617 转换为2进制为: 1001101001
8进制的1151 转换为2进制为: 1001101001 -
二进制数 11.01 在十进制下是( )。
A. 3.25
B. 4.125
C. 6.25
D. 11.125
解析:
整数部分11转换为10进制为:1*(20)+1*(21) = 3
小数部分0.1转换为10进制为:0*(2^-1) +1*(2^-2)=0.25 -
十六进制数9A在()进制下是232。
A. 四
B. 八
C. 十
D. 十二
解析:
先把9A换算成2进制,然后再把2进制转换成相应的进制
16进制的9A 转换为2进制为:10011010
2进制的10011010 转换为4进制为:2122
2进制的10011010 转换为8进制为:232
2进制的10011010 转换为10进制为:154 -
与二进制小数 0.1 相等的十六进制数是( )
A. 0.8
B. 0.4
C. 0.2
D. 0.1
解析:
先补足4位使0.1变成0.1000
然后根据2进制的1000得出16进制为8
因此小数部分就是0.8 -
与二进制小数 0.1 相等的八进制数是( )。
A. 0.8
B. 0.4
C. 0.2
D. 0.1
解析:
先补足3位使0.1变成0.100
然后根据2进制的100得出8进制为4
因此小数部分为0.4 -
十进制小数 13.375 对应的二进制数是( )。
A. 1101.011
B. 1011.011
C. 1101.101
D. 1010.01
解析:
整数13 除 2 取余得1101 16进制表示D
小数375 乘 2 取整得 011 0.3752 = 0.75
0.752 = 1.5 0.5*2 =1
合并起来:011 -
设X、Y、Z分别代表三进制下的一位数字,若等式XY + ZX = XYX在三进制下成立,那么同样在三进制下,等式XY * ZX = ( )也成立。
A. YXZ
B. ZXY
C. XYZ
D. XZY
解析:
先假设X、Y、Z分别为0,1,2或0,2,1或1,0,2分别代入XY + ZX = XYX看是否成立,成立之后看XY * ZX的结果跟选项A、B、C、D之间的一个比较
涉及进制转换加进制计算的题目
-
一个正整数在二进制下有100位,则它在十六进制下有( )位。
A. 7
B. 13
C. 25
D. 不能确定
解析:
一个16进制数,其中的每一位可以由4个二进制位来表示,8进制数的每一位可以由3个二进制位来表示 -
如果 256 种颜色用二进制编码来表示,至少需要( )位。
A. 6
B. 7
C. 8
D. 9
解析:
2的多少次方为256,256可以由多少个2进制数来表示 -
一个自然数在十进制下有n位,则它在二进制下的位数与( )最接近。
A. 5n
B. n * log(2 10)
C. 10 * log(2 n)
D. 10^n * log(2 n)
解析:
反向思考,一个10进制数是怎么由2进制来表现的,10乘以2为底,n的对数 -
把 64 位非零浮点数强制转换成32 位浮点数后,不可能 ()。
A. 大于原数
B. 小于原数
C. 等于原数
D. 与原数符号相反
解析:
因为把 64 位非零浮点数强制转换成 32 位浮点数后,只是丢弃了更高的数据存储精度(有效数字位数少了),不会影响数值的符号及前7位有效数字的。 -
下列各无符号十进制整数中,能用八位二进制表示的数中最大的是( )。
A. 296
B. 133
C. 256
D. 199
解析:
先把以上的10进制表示成2进制,然后截取后8位,看后8位的2进制数谁大。
10进制的296 转换为2进制为:1 0010 1000
10进制的133 转换为2进制为: 1000 0101
10进制的256 转换为2进制为:1 0000 0000
10进制的199 转换为2进制为: 1100 0111
由此可知,最大的是199