A General Coupling Matrix Synthesis Method for All-resonator Diplexers and Multiplexers

A General Coupling Matrix Synthesis Method for All-resonator Diplexers and Multiplexers

本文发表于2020年,收录于IEEE期刊《IEEE Transactions on Microwave Theory and Techniques》,影响因子为4.381,通讯作者为刘波,主要出版方向是优化/进化算法、微波滤波器、多路复用、无线电波传输等等,近几年发表多篇有关优化算法、工程设计的论文。

2018年,作者发表《Synthesis of Coupling Matrix for Diplexers Based on a Self-Adaptive Differential Evolution Algorithm》,提出SADEC算法,解决了CM合成优化需要非常好的初始值但不容易找到的问题,即本篇论文参考文献[15]。

摘要

  全谐振双工器和多路复用器的耦合矩阵合成方法还远未成熟。对于复杂的耦合拓扑,现有的方法往往无法找到满足s-参数规范的合适的耦合矩阵。为了解决这一挑战,本文提出了一种混合分析和优化技术的新合成方法,即通用全谐振器双工器/多路复用器耦合矩阵合成(GACMS)方法。GACMS的两个主要创新:1. 结合滤波器设计先验知识的优化框架,减少了耦合矩阵合成的搜索空间;2. 一种基于文化基因算法的优化器,解决了耦合矩阵合成问题的复杂景观(功能特征)的挑战。通过6个复杂的实际问题对GACMS进行了测试,并成功地得到了它们的耦合矩阵。与现有方法的比较表明,GACMS在解决方案质量和鲁棒性方面的优势。

文化基因算法(Memetic Algorithm, MA):一种基于种群的全局搜索和基于个体的局部启发式搜索的结合体。

  关键字:耦合矩阵,双工器,多路复用器,差分进化,文化基因算法。
  

1. 引言

  双工复用器和多路复用器的设计通常可以分为两个阶段,即寻找具有近似几何尺寸的初始三维设计,然后进行基于全三维电磁(EM)模拟的优化。
在这里插入图片描述

  无论采用的是基于局部优化的方法还是基于全局优化的方法,都必须有一个高质量的初始设计。利用耦合矩阵(CM)提供了一种获得初始设计的系统方法,这是本文研究的重点。
  现有的CM合成方法可分为基于分析的方法和基于优化的方法,前者是正向推导,很容易从数学上证明,通常是首选,但是没有可用于此类结构的通用方法,因此选择另一种,基于优化的方法。因为对于任何CM,都有相应的s参数响应,从中可以计算出s参数规范的误差。通过将该误差最小化到一个足够小的值,可以获得适当的耦合系数。
  该作者18年提出的(SADEC) [ 15 ] ^{[15]} [15]可以消除对高质量初始点依赖,但很难从合适的窄谷中定位全局最优解。
在这里插入图片描述

  对于双工复用器和多路复用器来说,描绘s参数基于性能的目标函数如何随耦合系数变化的情况是复杂的。图2说明了这种景观的简化表示,很明显,全局最优解(图2中的红点)位于一个狭窄的山谷中,而这里有很多狭窄的山谷,所以很难找到全局最优解。总结来说,基于优化的CM综合方法面临两个主要挑战:(1)耦合系数太多不好处理(正如作者18年的论文提到的,超过20个耦合系数就很难处理了,而现在先进的双工器和多工器都有超过20个耦合系数);(2)即使找到了合适的谷,也有可能只找到局部最优解

  为此,本文提出 通用全谐振器双工器/多路复用器耦合矩阵合成 (GACMS) 方法, 将分析方法与先进的优化技术相结合:

  1. 利用滤波器设计知识来帮助减少搜索空间,为优化提供了有用的支持信息(比如一些耦合系数的初值)。
  2. 提出了基于文化基因算法的新优化技术,以处理CM综合景观中大量的局部最优值,从而大大提高了求解质量。

  本文为了测试GACMS使用了6个实用的复杂全谐振双工器和多路复用器,都获得了良好的结果。
  这6个测试用例可以作为基准集来评估和比较不同的CM合成算法
  本文的其余部分组织如下:

  • 第二节介绍了全谐振腔双工器和多路复用器的概念以及相关的基本优化技术。
  • 第三节描述了提出的GACMS方法,包括新的CM综合框架和新的优化技术。
  • 第四节描述了测试用例。
  • 第五节给出了数值结果和比较。
  • 第六节总结了本文

2. 问题域(THE PROBLEM DOMAIN)

A. 全谐振双工器和多路复用器介绍

在这里插入图片描述

  图3显示了一个全谐振双工器的例子。通常,它可以分为两个部分,茎和分枝。分枝通过结谐振腔与杆相耦合,每个支路控制一个滤波带。一般来说,全谐振双工器和多路复用器可以用树形拓扑表示。与每个谐振腔相关联的耦合器的数量最好不超过三个。连接到阀杆的端口(图3中的P1)通常被称为公共端口,它可以通过带通滤波器的所有频率。杆中的谐振腔数量通常保持最小。当然更多的是在分支中添加交叉耦合以生成传输零,从而增强抑制和隔离,如图3所示。

B. 全谐振双工器和多路复用器的耦合矩阵

  对于具有 X ( X ≥ 3 ) X (X≥3) X(X3)个端口的n谐振腔网络,CM可写成分块矩阵 [ M ] ∈ R ( n + X ) × ( n + X ) [M]∈ℝ^{(n+X)× (n+X)} [M]R(n+X)×(n+X)的形式,
[ M ] = [ m m n , P X m n , P X T 0 ] (1) [M]=\begin{bmatrix} m & m_{n,PX} \\[2mm] m^T_{n,PX} & 0 \end{bmatrix} \tag1 [M]=[mmn,PXTmn,PX0](1)
其中 m ∈ R n × n m∈ℝ^{n×n} mRn×n是一般的 n × n n×n n×n阶CM,其中 m ( i , j ) ( i ≠ j , i , j = 1 , 2 , … , n ) m(i, j) (i≠j,i, j = 1,2,…,n) m(i,j)(i=j,i,j=1,2n)为谐振子 i i i j j j之间的相互耦合, m ( i , i ) m(i, i) m(i,i)为自耦合,表示第 i i i个谐振子的谐振频率。 m n , P X ∈ R n × X m_{n,PX}∈ℝ^{n×X} mn,PXRn×X为端口与谐振器之间的外部耦合矩阵。CM的阶是 n + X n+X n+X。对应的归一化电阻率矩阵[A]由下式给出:
[ A ] = [ R ] + p [ U ] − j [ M ] (2) [A]=[R]+p[U]-j[M] \tag2 [A]=[R]+p[U]j[M](2)
其中 [ R ] [R] [R] [ U ] [U] [U]是块矩阵,
[ U ] = [ u 0 0 0 ] , [ R ] = [ 0 0 0 r ] (3) [U]=\begin{bmatrix} u & 0 \\ 0 & 0 \end{bmatrix}, \quad [R]=\begin{bmatrix} 0 & 0 \\ 0 & r \end{bmatrix} \tag3 [U]=[u000],[R]=[000r](3)
其中 u u u是一个 n × n n×n n×n单位矩阵, r r r是一个 X × X X×X X×X单位矩阵。该多端口网络的 S S S参数可计算为
S p p = ± ( 1 − 2 [ A ] p p − 1 ) , (4) S_{pp}=\pm\Big(1-2[A]^{-1}_{pp}\Big),\tag4 Spp=±(12[A]pp1),(4)
S q p ∣ p ≠ q = 2 [ A ] p q − 1 , (5) S_{qp}\Big|_{p\not =q}=2[A]^{-1}_{pq},\tag5 Sqp p=q=2[A]pq1,(5)
其中, S p p S_{pp} Spp是附在第 p p p个谐振器端口的反射系数, S p q S_{pq} Spq是附在第 p p p个和第 q q q个谐振腔端口之间的传输系数。

C. CM合成的可用优化技术

简要介绍SQP和SADEC。

  1. 序列二次规划(SQP)
    SQP是一种常用的针对有约束非线性连续问题的局部优化技术,用于CM合成。在每次迭代中,约束优化问题被建模为二次规划问题。这个问题的拉格朗日函数是
    L ( x , λ 1 , . . . , λ m ) = f ( x ) + ∑ i = 1 m λ i T c i ( x ) (6) L(x,\lambda_1,...,\lambda_m)=f(x)+\sum_{i=1}^m\lambda_i^Tc_i(x)\tag6 L(x,λ1,...,λm)=f(x)+i=1mλiTci(x)(6)
    其中 f ( x ) f(x) f(x)是目标函数, c i ( x ) , i = 1 , 2 , . . . , m c_i(x),i=1,2,...,m ci(x),i=1,2,...,m是约束条件, λ i , i = 1 , 2 , . . . , m \lambda_i,i=1,2,...,m λi,i=1,2,...,m是拉格朗日乘子。在上式的第 n n n次迭代中,二次规划为
    m i n x   ∇ f ( x t ) T ⋅ s t + 1 2 s t T ∇ 2 ( L t ) ⋅ s t s . t .   ∇ c i ( x t ) T s i + c i ( x t ) ≤ 0 , i = 1 , 2 , . . . , m (7) \mathop{min}\limits_x\space\nabla f(x_t)^T\cdot s_t+\frac{1}{2}s^T_t\nabla^2(L_t)\cdot s_t \\[3mm] s.t.\space\nabla c_i(x_t)^Ts_i+c_i(x_t)\leq0,i=1,2,...,m\tag7 xmin f(xt)Tst+21stT2(Lt)sts.t. ci(xt)Tsi+ci(xt)0,i=1,2,...,m(7)
    其中 s t s_t st是二次规划问题的解。
    下一个迭代的形式是
    x t + 1 = x t + a t ⋅ s t (8) x_{t+1}=x_t+a_t\cdot s_t\tag8 xt+1=xt+atst(8)
    其中 a t a_t at是通过线性搜索方法得到的步长。
  2. SADEC
    SADEC是专为双工CM合成设计的优化算法。它基于差分进化(DE)算法。DE是一种基于群体的随机全局优化算法。它首先随机初始化候选解决方案的集合,然后应用突变算子生成亲本种群 p p p。在SADECGACMS中,使用 D E / r a n d / 1 DE/rand/1 DE/rand/1算子:
    x i = x r 1 + F ⋅ ( x r 2 − x r 3 ) (9) x^i=x^{r1}+F\cdot\Big(x^{r2}-x^{r3}\Big) \tag9 xi=xr1+F(xr2xr3)(9)
    其中 x r 1 x^{r1} xr1 x r 2 x^{r2} xr2 x r 3 x^{r3} xr3是从当前总体中随机选择的三个不同的候选解。 v i v^i vi是亲本群体的第 i i i个突变载体。 F ∈ ( 0 , 2 ] F\in(0,2] F(0,2]是一个比例因子。该方法通过应用交叉算子来生成子代种群。它的工作原理如下。
      i. 随机选择一个变量索引 j r a n d ∈ 1 , . . . , d j_{rand}\in{1,...,d} jrand1,...,d
      ii. 对于每个 j = 1 , . . . , d j = 1,...,d j=1,...,d,生成一个均匀分布的随机数 r a n d rand rand,从(0,1)开始,并设置
    x = { v   j i ( t + 1 ) , if  ( r a n d ≤ C R ) ∣ j = j r a n d x   j i ( t ) , otherwise (10) x = \begin{cases} v_{\space j}^i(t+1), &\text{if } (rand\leq CR)|j=j_{rand} \\[2mm] x_{\space j}^i(t), &\text{otherwise} \end{cases}\tag{10} x= v ji(t+1),x ji(t),if (randCR)j=jrandotherwise(10)
    其中d是变量的个数, C R ∈ [ 0 , 1 ] CR∈[0,1] CR[0,1]是一个称为交叉速率的常数, t t t是迭代次数。最后,选择操作符在父种群和子种群之间进行一对一的竞争。获胜者将成为下一个迭代的初始种群。
    考虑到双工CM合成的前景,SADEC对比例因子 F F F和交叉率 C R CR CR引入了自适应策略, F F F如下:
    F t e m p = n o r m ( 0.5 , 0.25 ) F i ( t ) = { 1 , if  F t e m p > 1 0.1 , if  F t e m p < 0.1 F t e m p , otherxise (11) F_{temp}=norm(0.5,0.25)\\[3mm] F^i(t) = \begin{cases} 1, &\text{if }F_{temp}>1 \\[1mm] 0.1, &\text{if }F_{temp}<0.1 \\[1mm] F_{temp}, &\text{otherxise} \end{cases}\tag{11} Ftemp=norm(0.5,0.25)Fi(t)= 1,0.1,Ftemp,if Ftemp>1if Ftemp<0.1otherxise(11)
    其中 n o r m ( 0.5 , 0.25 ) norm(0.5,0.25) norm(0.5,0.25)是均值为0.5,标准差为0.25的高斯分布随机数。 C R CR CR的自适应控制如下:
    C R t e m p = 0.1 + r a n d 1 × 0.8 C R i ( t ) = { C R t e m p , if  r a n d 2 < 0.1 C R i ( t − 1 ) , otherxise (12) CR_{temp}=0.1+rand_1 \times 0.8\\[3mm] CR^i(t) = \begin{cases} CR_{temp}, &\text{if } rand_2<0.1 \\[2mm] CR^i(t-1), &\text{otherxise} \end{cases}\tag{12} CRtemp=0.1+rand1×0.8CRi(t)= CRtemp,CRi(t1),if rand2<0.1otherxise(12)
    其中 t t t为迭代次数。选择 C R ( 1 ) = 0.9 CR(1)=0.9 CR(1)=0.9
    提出了一种新的多种群策略。两个相对的种群 P P P P ˉ \bar P Pˉ起初始化和优化。这两个群体有以下关系
    x ˉ i ( 1 ) = a + b − x i ( 1 ) (13) \bar x^i(1)=a+b-x^i(1)\tag{13} xˉi(1)=a+bxi(1)(13)
    其中 [ a , b ] d [a, b]^d [a,b]d为搜索范围, d d d为决策变量的个数(即耦合系数), x i ( 1 ) x^i(1) xi(1) P P P中的第 i i i个候选解, x ˉ i \bar x^i xˉi P ˉ \bar P Pˉ中相应的候选解。优化过程中控制两个种群演化的策略可在[15]中找到。实验表明,SADEC在目标问题上较标准DE有明显改善。上面3个公式也用于GACMS方法。

3. GACMS方法

A. 挑战和动机

  当前基于优化的CM合成的主要挑战来自类似图2所示的复杂景观,即带有多个窄带的多模态(在窄带中有多个局部最优解,也有可能包含全局最优解)。而搜索空间随耦合系数呈指数增长,所以,耦合系数越多全局最优的山谷就显得更窄,并且,当使用交叉耦合时,局部最优解会进一步增多。
  针对上述挑战,该论文提出了两个核心思想:

  1. 结合滤器设计知识来减少优化的搜索空间;
  2. 开发新的优化技术来处理复杂景观。

  根据滤波器设计的先验知识,一个完整的双工器/多工器结构可以被分成几个更小的分支。这样就简单了,就跟分治法一样,我们求解出小的分支的解,再通过一种方法将这些小的分支连接起来,形成完整的CM。很明显小分支的耦合系数的数量更小,而且可以使用基于分析的方法对小分支的一些耦合系数进行初始估计,这样就缩小了搜索范围。称这些初值为“FK值”。基于上述思想,本文提出了新的CM合成框架。
  初步实验表明,即使有滤波器设计知识的帮助,仍然需要更强的优化技术来提高解决方案的质量。很显然,全局搜索特性必须要有,它可以跳出局部最优,而局部搜索对于我们要解决的多模态问题也是必要的,它可以在窄带中进行精细的搜索,从而获得高质量的最终CM。单独的优化器都有被用于CM合成,但还没有融合全局和局部搜索的优化器,这就是我们要做的第二件事。

B. CM合成框架

  集成滤波器设计知识和优化的新的CM综合框架如图4所示。在这里插入图片描述
其工作原理如下:

Step 1:归一化

  CM合成在归一化频域内进行。图5(a)示出了具有 C N CN CN通道的多路复用器的频率变换。每个通道由带有 Ω A . j Ω_{A.j} ΩA.j Ω B . j \Omega_{B.j} ΩB.j的橙色块表示。 j ( j = 1 , . . . , C N ) j(j=1,...,CN) j(j=1,...,CN)表示第 j j j个通道。归一化后,复用器的整体通带将投影到 [ − 1 , + 1 ] [−1,+1] [1+1],即图5中的 Ω A . 1 = − 1 , Ω B . C N = + 1 \Omega_{A.1}=-1,\Omega_{B.CN}=+1 ΩA.1=1,ΩB.CN=+1
在这里插入图片描述

Step 2:得到部分耦合系数的 F K FK FK

  利用设计知识可以得到某些耦合系数的FK值。目标是缩小搜索范围。
外部耦合
  端口及其相邻谐振腔之间的外部耦合由一系列假设的低通原型滤波器(带边为±1)的外部质量因子推导而来,如图5(b)所示。低通到带通的频率变换应用于低通原型滤波器的外部质量因子:
q e . P k = q e . k L P ⋅ 2 ∣ Ω A . j − Ω B . j ∣ , ( k = 2 , . . . , X ; j = 1 , . . . , C N ) (14) q_{e.Pk}=q^{LP}_{e.k}\cdot \frac{2}{\big| \Omega_{A.j}-\Omega_{B.j}\big|},(k=2,...,X;j=1,...,CN)\tag{14} qe.Pk=qe.kLP ΩA.jΩB.j 2,(k=2,...,X;j=1,...,CN)(14)
  其中 q e . P k q_{e.Pk} qe.Pk q e . k L P q_{e.k}^{LP} qe.kLP表示复用器第k端口的外部质量因子和它们对应的低通原型滤波器。
  之后计算公共端口的外部质量因子:
1 q e . P 1 = ∑ k = 2 X 1 q e . P k (15) \frac{1}{q_{e.P1}}=\sum^X_{k=2}\frac{1}{q_{e.Pk}}\tag{15} qe.P11=k=2Xqe.Pk1(15)
最后,端口与谐振器之间的耦合可以表示为 m ( i , P k ) = 1 q e . P k , ( k = 1... X ) (16) m(i,Pk)=\frac{1}{\sqrt {q_{e.Pk}}},(k=1...X)\tag{16} m(i,Pk)=qe.Pk 1,(k=1...X)(16)其中第k端口与第i个谐振器耦合。
在这里插入图片描述
  举例来说,8谐振双工器如图所示,假设遵循以下规范化标准:

  • 频率范围: C h 1 ( − 1 t o   − 0.5 ) , C h 2 ( 0.6 t o 1 ) Ch1 (-1\enspace to \space-0.5),Ch2 (0.6\enspace to\enspace 1) Ch1(1to 0.5)Ch2(0.6to1);
  • 回波损耗: 20 d B 20 dB 20dB

  端口与谐振器之间的耦合系数通过以上3个公式计算为m(1, P1) = 0.1035, m(5, P2) =0.2329 以及 m(8, P3) = 0.1863 。
内部耦合
  很难找到与杆部相关的耦合系数的FK值。然而,利用带通滤波器CM合成方法可以找到分支的FK值。对于任何具有全极响应的分支,可以通过假设一个传统的包含结谐振器的双端口滤波器来获得FK值。因此,从低通原型 [ 4 ] ^{[4]} [4]的g值可以计算出FK耦合值。如果存在交叉耦合,可采用解析法或基于梯度的优化法求解耦合系数。然后,可以应用线性频率变换从低通转换回带通
m u , v B R = m u , v L P ⋅ ∣ Ω A . j − Ω B . j ∣ 2 ( j = 1... C N , u ≠ v ) (17) m^{BR}_{u,v}=m^{LP}_{u,v}\cdot\frac{\big|{\Omega_{A.j}-\Omega_{B.j}\big|}}{2}(j=1...CN,u\not =v)\tag{17} mu,vBR=mu,vLP2 ΩA.jΩB.j (j=1...CN,u=v)(17)
  式中 m u , v B R m^{BR}_{u,v} mu,vBR m u , v L P m^{LP}_{u,v} mu,vLP分别为带通和低通原型滤波器中的内部耦合。分支中的自耦合由下式给出:
m u , u B R = m u , u L P ⋅ Ω A . j + Ω B . j 2 ( j = 1... C N ) (18) m^{BR}_{u,u}=m^{LP}_{u,u}\cdot\frac{{\Omega_{A.j}+\Omega_{B.j}}}{2}(j=1...CN)\tag{18} mu,uBR=mu,uLP2ΩA.j+ΩB.j(j=1...CN)(18)
  式中 m u , u B R m^{BR}_{u,u} mu,uBR m u , u L P m^{LP}_{u,u} mu,uLP分别为带通和低通原型滤波器中的自耦合。
  以图6中的双工器为例,得到的FK值如表I所示,经过上述步骤后两个分支的响应如图7所示。
在这里插入图片描述

Step 3:耦合系数分组

  将所有对通道有影响的耦合系数组成一组,因此,杆中的耦合包含在每一组中。对于图6中的双工器实例,将耦合系数分为两组,如表II所示。分组后的组拓扑如图8所示。
在这里插入图片描述

Step 4:分组优化

  在第2步中得到的FK值现在将用于下面的耦合系数组。注意,尽管每组只优化部分耦合系数,但目标函数需要包含所有通道的特征。
  优化策略:随机选择一组开始,对于第一组,将杆内以及与谐振腔相关的耦合系数的搜索范围设为全范围[0,1]。该组中其他耦合系数,搜索范围设置为 [ x h − r , x h + r ] [x_h−r, x_h+r] [xhr,xh+r],其中 x h x_h xh F K FK FK值向量, r = 0.1 r = 0.1 r=0.1
  此时,只优化了第一组,其他组的FK值保持不变。而很显然,杆内的谐振腔是每组公共的,所以优化输出包括杆 ( x s r e f ) (x^{ref}_s) (xsref)和目标分支的耦合系数值。观察到, x s r e f x^{ref}_s xsref与相应的最终最优耦合系数值相比差距比较小。因此,在接下来的优化中,杆内耦合系数的搜索范围以 x s r e f x^{ref}_s xsref为中心进行缩放。在这一步中使用的优化算法称为优化器 I I I,将在下一节优化技术中进行说明。
  对于第二组,仍然使用优化器 I I I,但是有些谐振腔搜索范围不同。对于杆内的耦合系数,搜索范围为 [ x s r e f − r , x s r e f + r ] [x^{ref}_s−r, x^{ref}_s+r] [xsrefr,xsref+r],依然选择 r = 0.1 r=0.1 r=0.1,注意 x s r e f x^{ref}_s xsref会在每组优化之后更新。组中其他未耦合的谐振腔和与结谐振腔耦合的谐振腔,采用相应的第一组搜索范围。对于不在该组中的耦合系数,不优化保持原样。后面的组都按照此过程优化。

Step 5:最终微调

  由于结谐振腔是公共的,各分支仍然会有一定的相互影响,因此分组优化后耦合系数还需要进一步优化。在这一步中,它们将作为一个整体进行优化,但会在一个小的搜索范围内。采用了不同的优化器,即优化器 I I II II,这也在下一节优化技术中描述。在最终微调之后,得到的CM被从频率域转换到真实域。

C. 优化技术

(1) 目标函数

  目标函数对于任何优化都是至关重要的。对于双工/多路复用器CM合成,目标函数由s参数规范组成。假设X端口复用器,本文考虑的目标函数为
f ( x ) = ∑ k = 1 X − 1 ∣ max ⁡ [ S 11 ( P B k ) ] − R L ∣ ∣ R L ∣ + . . . + ∣ m a x [ S 32 ( P B 1 ) ] − I S ∣ . . . + ∣ m a x [ S X , X − 1 ( P B X − 1 ) ] − I S ∣ ∣ I S ∣ (19) f(x)=\frac{\sum{^{X-1}_{k=1}}|\max[S_{11}(PB_k)]-RL|}{|RL|}+... \\[2mm]+\frac{|max[S_{32}(PB_1)]-IS|...+|max[S_{X,X-1}(PB_{X-1})]-IS|}{|IS|}\tag{19} f(x)=RLk=1X1max[S11(PBk)]RL+...+ISmax[S32(PB1)]IS∣...+max[SX,X1(PBX1)]IS(19)
  其中 P B k PB_k PBk表示第 k ( k = 1 , … , X − 1 ) k (k = 1,…,X−1) k(k=1X1)通带。 R L RL RL I S IS IS分别为期望的回波损耗和隔离级别。 S 11 S_{11} S11为端口1的反射响应, S 32 、 S 42 、 … 、 S X , X − 1 S_{32}、S_{42}、…、S_{X,X−1} S32S42SX,X1为隔离响应。

回波损耗:为滤波器性能的一种度量,表示滤波器输入和输出阻抗接近理想阻抗值的程度。回波损耗定义为:RL=10Log(Pr/Pin),与频率无关,其中 Pr 为反射回发生器的功率,Pin 为从发生器输入的功率。
隔离:双工器中,考虑接收(Rx)通道时为抑制传输(Tx)频率的能力,考虑传输(Tx)频率时为抑制接收(Rx)频率的能力,称为 Rx/Tx 隔离。隔离度越高,滤波器能够将 Rx 信号与 Tx 信号隔离开的能力就越强,反之亦然。其结果是传输和接收信号都更加干净。摘自 《RF 滤波器的详细解析》

  目标函数中第一项与 S 11 S_{11} S11有关,表示每个通道的返回损耗。通过 S p p = ± ( 1 − 2 [ A ] p p − 1 ) S_{pp}=\pm\Big(1-2[A]^{-1}_{pp}\Big) Spp=±(12[A]pp1)从CM中估计 S 11 S_{11} S11的值。在带通中,最大值为目标函数中的 max ⁡ [ S 11 ( P B k ) ] \max[S_{11}(PB_k)] max[S11(PBk)],它与我们期望的回波损耗水平(例如,20分贝)的距离被最小化。第二项中考虑了带通中的隔离响应约束(例如双工器中的 S 32 S_{32} S32)。多路复用器的设计标准通常要求通带内的隔离低于所需水平(例如,双路复用器的 S 32 S_{32} S32小于 − 30 d B −30dB 30dB)。据观察,一个通道通带内的隔离响应与其他通道 [ 8 ] ^{[8]} [8]的抑制带内的传输响应(例如 S 12 S_{12} S12)密切相关,这有助于保持通带内的带宽。因此,在目标函数中使用带通中的隔离响应替代指定传输响应无疑是更方便的。这也减少了目标函数中项目的数量。注意,最佳隔离响应在很大程度上取决于所选拓扑。在实际情况下,如果不能满足隔离要求,则需要改进拓扑。

(2) 优化器 I 、 I I I、II III

  正如上一节中提到的,在步骤4中逐组优化中使用了优化器 I I I。这一步需要算法找到全局最优的窄谷(图2),为了避免陷入错误的山谷,需要较高的全局探测能力。此外,由于山谷非常狭窄,即使父候选解的质量很好(如(9)中的 x r 1 、 x r 2 x^{r1}、x^{r2} xr1xr2 x r 3 x^{r3} xr3),全局勘探算子获得的新候选解可能会错位在山谷外(即图2中的平坦区域)。

  因此,在提高目标函数值的同时,需要进行局部优化,以保持全局搜索得到的最优搜索模式。

  文化基因算法能够兼顾全局和局部优化的要求。进化算法作为全局优化器,文化基因算法在进化算法的种群迭代更新中集成了局部优化。在进化算法的每次迭代中,通过局部优化对进化算子得到的部分或全部种群进行更新,作为下一次迭代的起始种群。

  在GACMS中,选择SADEC作为全局优化器,选择SQP作为局部优化器。SADEC在没有 F K FK FK值的情况下,能对具有对称响应的双工器生成高质量的CM。而当CM初值良好时,SQP则表现很好,因此,该方法在每次迭代中对SADEC得到的总体进行SQP

  这个文化基因SADEC (MSADEC)是我在CM合成框架的第4步中使用的优化器 I I IMSADEC的流程图如图9所示。自适应变异和交叉算符以及返回算符见(11)-(13),更多细节见 [ 15 ] ^{[15]} [15]
在这里插入图片描述
  SQP本身在第5步中用作优化器 I I II II。搜索范围定义为 ( m g − 0.1 , m g + 0.1 ) (m_g−0.1,m_g+0.1) (mg0.1,mg+0.1),其中 m g m_g mg为步骤4提供的解向量。注意, m g m_g mg通常接近最终的全局最优解,这一步不需要全局探索。另外,从图3中可以看出,包含全局最优解的谷非常窄。在不限制搜索范围的情况下使用全局优化器或SQP可能会破坏已经获得的最优模式,我们的实验也验证了这一点。因此,用 r = 0.1 r=0.1 r=0.1来限制局部优化。

4. 双工和多路复用器测试用例

  本节提供六个示例来测试GACMS方法。这些例子,如图10所示,我们也提议用作测试用例,以供大家参考。例如2、3和4,具有相数量谐振腔的经典拓扑也可以产生类似的响应,并可以解析合成。本文用相应的全谐振双工器验证了所提出的方法。另一方面,例子1、5和6是有意义的,因为它们允许许多输出端口(通道)保持到每个谐振器的耦合器的最大数量为3。这些例子证明了全谐振腔结构的独特优势。例子的复杂性在于因大量的谐振器而不断增加的通道数量(因此是连接谐振器),以及许多交叉耦合。特别是,与结谐振器相关的耦合系数的 F K FK FK值很难获得。对于这些耦合必须使用完整的搜索范围(即[0,1]),这大大增加了优化的难度。交叉耦合增加了更多的局部优化,导致更崎岖的景观。测试问题具有实际意义,可以设想双工复用器和多路复用器的全新设计。表III列出了所有示例的关键特征。
所有情况的规范都用归一化频率范围表示。
在这里插入图片描述
在这里插入图片描述

  例1(图10 (a))是一个具有对称切比雪夫响应的16腔多路复用器。对称有助于将变量的数量减少到15个,这是所有测试用例中最少的。目标函数是, f 1 = max ⁡ ( P B 1 − ( − 20 ) , 0 ) 20 + max ⁡ ( P B 2 − ( − 20 ) , 0 ) 20 + max ⁡ ( P B 3 − ( − 20 ) , 0 ) 20 + max ⁡ ( P B 4 − ( − 20 ) , 0 ) 20 + max ⁡ ( I S 1 − ( − 30 ) , 0 ) 30 + max ⁡ ( I S 2 − ( − 30 ) , 0 ) 30 + max ⁡ ( I S 3 − ( − 30 ) , 0 ) 30 (20) f_1=\frac{\max(PB_1-(-20),0)}{20}+\frac{\max(PB_2-(-20),0)}{20}\\+\frac{\max(PB_3-(-20),0)}{20}+\frac{\max(PB_4-(-20),0)}{20}\\+\frac{\max(IS_1-(-30),0)}{30}+\frac{\max(IS_2-(-30),0)}{30}\\+\frac{\max(IS_3-(-30),0)}{30} \tag{20} f1=20max(PB1(20),0)+20max(PB2(20),0)+20max(PB3(20),0)+20max(PB4(20),0)+30max(IS1(30),0)+30max(IS2(30),0)+30max(IS3(30),0)(20)
  其中, P B 1 = m a x ( ∣ S 11 ∣ ) , [ − 1 , − 0.75 ] ; P B 2 = m a x ( ∣ S 11 ∣ ) , [ − 0.417 , − 0.167 ] ; P B 3 = m a x ( ∣ S 11 ∣ ) , [ 0.167 , 0.417 ] ; P B 4 = m a x ( ∣ S 11 ∣ ) , [ 0.75 , 1 ] ; I S 1 = m a x ( ∣ S 32 ∣ ) , [ 0.167 , 1 ] ; I S 2 = m a x ( ∣ S 43 ∣ ) , [ − 0.417 , 0.417 ] ; I S 3 = m a x ( ∣ S 54 ∣ ) , [ − 1 , − 0.167 ] PB_1=max(|S_{11}|), [−1, −0.75]; PB_2=max(|S_{11}|), [−0.417, −0.167]; \\PB_3=max(|S_{11}|), [0.167, 0.417]; PB_4=max(|S_{11}|), [0.75, 1]; IS_1=max(|S_{32}|), [0.167, 1]; \\IS_2=max(|S_{43}|), [−0.417, 0.417]; IS_3=max(|S_{54}|), [−1, −0.167] PB1=max(S11),[1,0.75];PB2=max(S11),[0.417,0.167];PB3=max(S11),[0.167,0.417];PB4=max(S11),[0.75,1];IS1=max(S32),[0.167,1];IS2=max(S43),[0.417,0.417];IS3=max(S54),[1,0.167] P B k PB_k PBk为第 k k k个通带,方括号内的数字为归一化频带。 I S j IS_j ISj表示通带内的第 j j j个隔离级别。下面的例子用同样的符号表示。

。。。

  例4(图10 (d))是一个12腔双工器。全谐振腔双工器的隔离响应不一定比经典结基双工器好。这种新型拓扑结构有助于增加全谐振双工器 [ 25 ] ^{[25]} [25]的通带隔离。除了每个通道中的三元组之外,耦合簇1-4提供了两个额外的传输零。决策变量的数量和交叉耦合的存在都增加了优化的难度。目标函数是
f 4 = max ⁡ ( P B 1 − ( − 20 ) , 0 ) 20 + max ⁡ ( P B 2 − ( − 20 ) , 0 ) 20 + max ⁡ ( I S 1 − ( − 60 ) , 0 ) 60 + max ⁡ ( I S 2 − ( − 60 ) , 0 ) 60 (23) f_4=\frac{\max(PB_1-(-20),0)}{20}+\frac{\max(PB_2-(-20),0)}{20}\\+\frac{\max(IS_1-(-60),0)}{60}+\frac{\max(IS_2-(-60),0)}{60} \tag{23} f4=20max(PB1(20),0)+20max(PB2(20),0)+60max(IS1(60),0)+60max(IS2(60),0)(23)
其中 P B 1 = m a x ( ∣ S 11 ∣ ) , [ − 1 , − 0.1 ] ; P B 2 = m a x ( ∣ S 11 ∣ ) , [ 0.2 , 1 ] ; I S 1 = m a x ( ∣ S 32 ∣ ) , [ − 1 , − 0.1 ] ; I S 2 = m a x ( ∣ S 32 ∣ ) , [ 0.2 , 1 ] PB_1=max(|S_{11}|), [−1, −0.1]; PB_2=max(|S_{11}|), [0.2, 1]; IS_1=max(|S_{32}|), [−1, −0.1]; IS_2=max(|S_{32}|), [0.2, 1] PB1=max(S11),[1,0.1];PB2=max(S11),[0.2,1];IS1=max(S32),[1,0.1];IS2=max(S32),[0.2,1]。耦合系数的分组如表IV所示。
在这里插入图片描述
  粗体部分同时出现在两组中。

。。。

5. 数值结果与比较

A. GACMS的性能

  GACMS通过第四节的六种情况进行了测试。在参数设置方面,有两种:

  1. 综合框架中的参数。如在FK值附近使用r = 0.1来定义更新的搜索范围:这些参数是经验设置的,但一旦设置,它们在框架内是固定的,不需要用户修改。
  2. MSADEC优化器的算法参数。与SADEC相比,MSADEC没有引入任何新的参数。因此,SADEC的参数设置仍然适用于MSADEC,详见[15]。

  在接下来的实验中,MSADEC使用[15]中相同的SADEC参数。对于所有的测试示例,使用独立随机数对GACMS进行了10次运行。GACMS的最大迭代次数是250。在大多数情况下,在150次迭代中获得了满意的结果。所有实例的外部耦合系数、FK值和典型的最终解在附录中显示。对于所有示例,使用Intel i7-7770HQ CPU和32 GB RAM的台式计算机,CM合成时间约为20到30分钟。
  GACMS 10次运行的统计结果如表VII所示。此外,在10次运行中非常小的标准差显示了GACMS的鲁棒性。
在这里插入图片描述
  在图11(d)对图10(d)拓扑的响应中,可以观察到只有两个传输零点是可以清楚识别的。这是因为耦合簇1-4引入的两个传输零几乎合并到信道三联的两个零中。从次优解决方案(带边的排斥值略低)可以清楚地看到四个传输零,这里没有显示。
在这里插入图片描述

B. 与最先进方法的比较

  如前所述,尽管CM合成已经很好地应用于滤波器,但对于全谐振器双工器和多路复用器来说还远远不够成熟。最流行的,可能也是唯一通用的基于优化的方法是SQP,其起点是基于先验知识。SADEC是一个双工合成优化器,而不是一个独立的方法。SADEC的目标是减少对起点的高度依赖,但是它仍然需要在CM合成框架中实现。因此,我们选择的参考方法是SQP。

  起点的好坏决定了基于SQP的CM合成的成功与否。为了保证起点质量,我们使用以下设置:对于分支的耦合系数,使用GACMS步骤2中的FK值。对于杆内的耦合系数,由于没有FK值,与其他滤波器合成方法[23]一样使用0.5。为了避免破坏第三节所讨论的最优模式,对于分支的耦合系数,搜索范围与GACMS相同。可以看出,通过借鉴GACMS的一些思想,这种比较有利于SQP。SQP是使用MATLAB[26]中的函数“fmincon”来实现的。由于SQP是一种确定性方法,因此只需要运行一次。表VIII比较了增强SQP的最优目标函数值与GACMS的平均目标函数值。表IX显示了两种方法的成功率。CM合成是否成功的判断依据如下规则:

  1. 反射零点位于指定的通道通带内。
  2. 满足或几乎满足s参数规格(即max|S11| <−18dB)。

可以看出,在所有情况下,GACMS的最终目标函数值都优于增强SQP。与GACMS的100%成功率相比,增强型SQP在更复杂的情况下失败,如例4-6。
在这里插入图片描述
  对于4-6情况,我们观察到增强的SQP被困在一个不可接受的局部最优,不接近适当的耦合系数。这说明,即使有一个精心选择的起点,SQP的优化能力对于目标复杂的情况是不够的。也可以观察到滤波器和双工/复用器CM合成之间的复杂性差异。当使用0.5作为所有变量的起点时,使用SQP的双端口滤波器CM合成通常会成功[24],但对于具有复杂结构的双工器和多路复用器就不是这样了。

C. MSADEC优点的验证

  本小节重点验证[15]中新的MSADEC算法相对于原始SADEC算法的优点。

  使用3(B)节中描述的相同的合成框架,第4步中使用的优化器I (MSADEC)被[15]中的原始SADEC所取代。所有参数设置都是一样的。每个测试用例进行十次运行,比较结果如表X和表XI所示。可以看出,当使用原始的SADEC作为优化器I时,虽然结果优于SQP,但解决方案质量明显不如MSADEC。首先,对于所有的测试用例,MSADEC得到的最优目标函数值都比SADEC小得多。对于非常复杂的测试用例5和6,SADEC的成功率会下降。对于测试用例6,当使用SADEC时,10次运行中只有3次成功,而MSADEC的成功率为100%。
在这里插入图片描述
  另一个观察结果是,当使用MSADEC时,收敛通常发生在20,000个评估中,而SADEC需要超过200,000个评估。这可以用图2中的景观来解释。SADEC是一种全局优化算法。当识别出包含全局最优的窄谷时,DE突变算子可能破坏已经获得的最优模式,在图2的平坦区域生成候选解。这是因为与DE突变在某些搜索阶段的步长相比,山谷太窄了。只有当种群中的候选解彼此接近(即接近收敛点)时,步长才合适。换句话说,SADEC正处于“制造和打破”的过程中。相比之下,MSADEC利用局部搜索(同样具有有限的搜索范围)来改进目标函数,同时保护现有的最优模式。

6. 结论

  本文提出了一种全谐振腔双工复用器的CM合成方法,即GACMS。GACMS被认为是解决全谐振腔双工器和多路复用器的复CM合成的第一个通用方法。实例研究和比较表明,该算法对目标复杂CM合成问题具有较高的优化能力和鲁棒性。该方法的优异性能可以归因于新的框架,它应用滤波器设计知识来减少搜索范围,简化优化问题,以及新的MSADEC优化器,以解决特定景观的挑战。这六个实际示例不仅用于演示GACMS的能力,而且还为后来人提供了未来的测试和比较。GACMS的一个限制是要处理的通道数量。信道数量越多,频率分布网络中需要包含的谐振器就越多。这些结谐振器周围的耦合系数通常没有FK值,必须在整个范围内搜索,例如[0,1]。因此,搜索空间被大大扩大。我们的经验发现,GACMS已经成功地为多达7通道的多路复用器合成了CM。我们未来的工作将集中于克服现有的限制,开发基于GACMS的软件工具。

缺点:GACMS的一个限制是要处理的通道数量。信道数量越多,频率分布网络中需要包含的谐振器就越多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值