滤波器耦合矩阵优化算法

实验、

目标拓扑:cul-de-sac
适应度函数:基于结构差异的目标函数(正交约束)。
可用算法:SADE等14个,结果如下:

Example 3:

N=12; 
RL=20; 
fz=[1.15,1.3,-1.5,-1.1,-1.2];
T= [0   -0.2788    0.3015    0.2865   -0.2931    0.1623   -0.2177   -0.2451    0.2868    0.2949   -0.3218   -0.3244    0.3336         0
   -0.2788   -1.0889         0         0         0         0         0         0         0         0         0         0         0    0.2788
    0.3015         0   -1.0845         0         0         0         0         0         0         0         0         0         0    0.3015
    0.2865         0         0    1.0838         0         0         0         0         0         0         0         0         0    0.2865
   -0.2931         0         0         0    1.0833         0         0         0         0         0         0         0         0    0.2931
    0.1623         0         0         0         0    0.9769         0         0         0         0         0         0         0    0.1623
   -0.2177         0         0         0         0         0   -0.9490         0         0         0         0         0         0    0.2177
   -0.2451         0         0         0         0         0         0    0.8508         0         0         0         0         0    0.2451
    0.2868         0         0         0         0         0         0         0   -0.7544         0         0         0         0    0.2868
    0.2949         0         0         0         0         0         0         0         0    0.6223         0         0         0    0.2949
   -0.3218         0         0         0         0         0         0         0         0         0   -0.4512         0         0    0.3218
   -0.3244         0         0         0         0         0         0         0         0         0         0    0.2991         0    0.3244
    0.3336         0         0         0         0         0         0         0         0         0         0         0   -0.0793    0.3336
         0    0.2788    0.3015    0.2865    0.2931    0.1623    0.2177    0.2451    0.2868    0.2949    0.3218    0.3244    0.3336         0];

在这里插入图片描述
其中,
JADE1 best_fitness= 5.927666919254815e-22
SADE2 best_fitness= 5.219743021849689e-07
SHADE3 best_fitness= 2.6365115575194867e-16
L_SHADE4 best_fitness= 6.012393172989637e-10
BaseFBIO5 best_fitness= 4.229786706418416e-07
OriginalFBIO6 best_fitness= 5.615313266851817e-06
OriginalICA7 best_fitness= 5.820169307158884e-06
OriginalSARO8 best_fitness= 1.082914445476703e-06
AugmentedAEO9 best_fitness= 7.600981040107246e-08
OriginalEO10 best_fitness= 8.423992730238045e-06
AdaptiveEO11 best_fitness= 3.180833237982696e-05
OriginalNRO12 best_fitness= 3.2514380167467287e-06
OriginalSA13 best_fitness= 3.9297281862173866e-19
OriginalSSO14 best_fitness= 6.240062920163945e-09

example 4:

N=12; 
RL=20; 
fz=[ 1.05,1.2,-1.4,-1.1,-1.3];
T= [0    0.2904    0.2853   -0.2938   -0.2884    0.1698   -0.1794   -0.2509    0.2822    0.3002   -0.3252   -0.3298    0.3389         0
    0.2904   -1.0848         0         0         0         0         0         0         0         0         0         0         0    0.2904
    0.2853         0    1.0841         0         0         0         0         0         0         0         0         0         0    0.2853
   -0.2938         0         0    1.0835         0         0         0         0         0         0         0         0         0    0.2938
   -0.2884         0         0         0   -1.0815         0         0         0         0         0         0         0         0    0.2884
    0.1698         0         0         0         0    0.9740         0         0         0         0         0         0         0    0.1698
   -0.1794         0         0         0         0         0   -0.9740         0         0         0         0         0         0    0.1794
   -0.2509         0         0         0         0         0         0    0.8396         0         0         0         0         0    0.2509
    0.2822         0         0         0         0         0         0         0   -0.8062         0         0         0         0    0.2822
    0.3002         0         0         0         0         0         0         0         0    0.6004         0         0         0    0.3002
   -0.3252         0         0         0         0         0         0         0         0         0   -0.5074         0         0    0.3252
   -0.3298         0         0         0         0         0         0         0         0         0         0    0.2642         0    0.3298
    0.3389         0         0         0         0         0         0         0         0         0         0         0   -0.1272    0.3389
    0    0.2904    0.2853    0.2938    0.2884    0.1698    0.1794    0.2509    0.2822    0.3002    0.3252    0.3298    0.3389         0];

在这里插入图片描述

JADE best_fitness= 3.0361458487516416e-26
SADE best_fitness= 9.754129629454355e-06
SHADE best_fitness= 2.180055198292903e-17
L_SHADE best_fitness= 3.382736595799007e-11
BaseFBIO best_fitness= 8.56316352105608e-06
OriginalFBIO best_fitness= 7.042993145339812e-07
OriginalICA best_fitness= 3.0524315204613603e-10
OriginalSARO best_fitness= 1.6632612537739397e-07
AugmentedAEO best_fitness= 1.1279504709470763e-04
OriginalEO best_fitness= 3.23448658662429e-06
AdaptiveEO best_fitness= 3.36857098509265e-06
OriginalNRO best_fitness= 3.767691653413289e-06
OriginalSA best_fitness= 3.397544335649749e-19
OriginalSSO best_fitness= 1.5452786432584924e-11

其中,用JADE优化的cul-de-sac拓扑的耦合矩阵如下:
jade

典型算法介绍

JADE: Adaptive Differential Evolution with Optional External Archive

JADE是一种有效的DE变体,其采用控制参数自适应机制。除了参数自适应之外,JADE还使用了一种称为current-to-pbest/1的新型突变策略(7)和一个用于存储先前生成的个体的外部存档。JADE有两个相应的自适应变量 µ C R µ_{CR} µCR µ F µ_F µF,而不是静态的交叉率 C R CR CR和比例因子 F F F。根据均值为 µ C R 、 µ F µ_{CR}、µ_F µCRµF的正态/柯西分布生成与每个个体相关的交叉率和比例因子。在每一代结束时, µ C R , µ F µ_{CR},µ_F µCRµF的值根据导致在该代中生成成功试验向量的 C R , F CR,F CRF对进行更新。随着搜索的进行, µ C R 、 µ F µ_{CR}、µ_F µCRµF应逐渐接近给定问题的最优值。

current-to-pbest/1变异策略

current-to-pbest/1所使用的突变策略是current-to-best/1策略的变体,其中贪婪度可以使用参数p进行调整。
在这里插入图片描述

在(7)式中,个体 x p b e s t x_{pbest} xpbest G G G是从第 G G G代的前 N × p ( p ∈ [ 0 , 1 ] ) N×p(p ∈ [0,1]) N×pp[01]个成员中随机选取的。 F i F_i Fi是个体 x i x_i xi使用的 F F F参数。current-to-pbest/1的贪婪程度取决于控制参数 p p p,以便平衡开发和探索(小 p p p表现得更贪婪)。

外部存档

在传统的DE中,用于比试的 u i u_i ui如果比 x i x_i xi差的话是不会被保留的,而在JADE中则被保留下来。当选择归档时(7)式中的 x r 2 , G x_{r2,G} xr2,G是从 P ∪ A P∪A PA中被选择的,其中,P为当前种群,A为存档。

集合A:每当子代将父代取代时,我们将父代转存到集合A中,并不断随机从A中剔除一些父代,使得A的大小小于NP

参数自适应

每代中的每个个体,其Cr都是符合正态分布 N ( µ C R , 0.1 ) N(µCR,0.1) N(µCR,0.1)且大小被约束在[0,1]内的随机数。其中µCR遵循自更新公式
µ C R = ( 1 − c ) ⋅ μ C r + c ⋅ m e a n A ( S C R ) µCR=(1-c)\centerdot \mu Cr + c \centerdot mean_A(S_{CR}) µCR=(1c)μCr+cmeanA(SCR)

μ C R \mu_{CR} μCR初始值为0.5
c是一个常数,一般来说 1 / c ∈ [ 5 , 20 ] 1 / c ∈ [ 5 , 20 ] 1/c[5,20]
m e a n A mean_A meanA 指计算算术平均数
S C r S_{Cr} SCr 为本代中每次子代solution取代父代 solution时的Cr的集合

每代中的每个个体,其 F i F_i Fi都是符合柯西分布 C ( μ F , 0.1 ) C(\mu_F,0.1) C(μF,0.1)的随机数,

F i > 1 F_i > 1 Fi>1时会被设为1
F i ≤ 1 F_i \leq 1 Fi1时会重新随机

μ F \mu_F μF比例参数为0.1,且符合自更新公式
μ F = ( 1 − c ) ⋅ μ F + c ⋅ m e a n L ( S F ) \mu_F=(1-c)\centerdot \mu_F + c \centerdot mean_L(S_F) μF=(1c)μF+cmeanL(SF)

μ F μ_F μF 初始值为0.5
c是一个常数,一般来说 1 / c ∈ [ 5 , 20 ] 1/c\in[5,20] 1/c[5,20]
m e n a L ( ⋅ ) mena_L(\centerdot) menaL()是Lehmer mean。 m e a n L ( S F ) = ∑ F ∈ S F F 2 ∑ F ∈ S F F mean_L(S_F)=\cfrac{\sum_{F\in S_F}F^2}{\sum_{F\in S_F}F} meanL(SF)=FSFFFSFF2
S F S_F SF为本代中每次子代个体取代父代个体时的F的集合

SHADE: Success-History Based Parameter Adaptation for Differential Evolution

在本文中,我们提出了以成功历史为基础的自适应差分进化算法(SHADE),增强JADE使用的历史为基础的参数自适应方案。
JADE算法使用单个的 μ C R \mu_{CR} μCR μ F \mu_F μF,SHADE则是在 M C R M_{CR} MCR M F M_F MF中随机选择 μ C R \mu_{CR} μCR μ F \mu_F μF来生成CR和F。加强了跳出局部最优解的能力。

我们用 M C R M_{CR} MCR来表示存储了 H H H个成功的 μ C r \mu_{Cr} μCr的集合,用 M F M_{F} MF来表示存储了 H H H个成功的 μ F \mu_{F} μF的集合, H H H的值是自定义的。

在这里插入图片描述
当更新完一轮后,从头覆盖原位置来更新数组。

L-SHADE: SHADE with Linear Population Reduction

L-SHADE算法实为增加了线性参数递减的SHADE算法。
在这里插入图片描述

为了加快约束速度,我们根据当前已更新的参数个数线性减少一个种群中的个体的数目,参数的减少规律如图中黄线所示。

部分参照DE、SaDE、JADE、SHADE、L-SHADE算法整理


  1. J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution with optional external archive,” IEEE Tran. Evol. Comput., vol. 13,no. 5, pp. 945–958, 2009. ↩︎

  2. Qin, A. K., & Suganthan, P. N. (2005, September). Self-adaptive differential evolution algorithm for numerical optimization. In 2005 IEEE congress on evolutionary computation (Vol. 2, pp. 1785-1791). IEEE. ↩︎

  3. Tanabe, R. and Fukunaga, A., 2013, June. Success-history based parameter adaptation for differential evolution. In 2013 IEEE congress on evolutionary computation (pp. 71-78). IEEE. ↩︎

  4. Tanabe, R. and Fukunaga, A.S., 2014, July. Improving the search performance of SHADE using linear population size reduction. In 2014 IEEE congress on evolutionary computation (CEC) (pp. 1658-1665). IEEE. ↩︎

  5. Fathy, A., Rezk, H. and Alanazi, T.M., 2021. Recent approach of forensic-based investigation algorithm for optimizing fractional order PID-based MPPT with proton exchange membrane fuel cell.IEEE Access,9, pp.18974-18992. ↩︎

  6. Chou, J.S. and Nguyen, N.M., 2020. FBI inspired meta-optimization. Applied Soft Computing, p.106339. ↩︎

  7. Atashpaz-Gargari, E., & Lucas, C. (2007, September). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation (pp. 4661-4667). Ieee. ↩︎

  8. Shabani, A., Asgarian, B., Gharebaghi, S. A., Salido, M. A., & Giret, A. (2019). A New Optimization Algorithm Based on Search and Rescue Operations. Mathematical Problems in Engineering, 2019. ↩︎

  9. Van Thieu, N., Barma, S. D., Van Lam, T., Kisi, O., & Mahesha, A. (2022). Groundwater level modeling using Augmented Artificial Ecosystem Optimization. Journal of Hydrology, 129034. ↩︎

  10. Faramarzi, A., Heidarinejad, M., Stephens, B., & Mirjalili, S. (2019). Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems. ↩︎

  11. Wunnava, A., Naik, M. K., Panda, R., Jena, B., & Abraham, A. (2020). A novel interdependence based multilevel thresholding technique using adaptive equilibrium optimizer. Engineering Applications of Artificial Intelligence, 94, 103836. ↩︎

  12. Wei, Z., Huang, C., Wang, X., Han, T., & Li, Y. (2019). Nuclear Reaction Optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access. ↩︎

  13. Van Laarhoven, P. J., & Aarts, E. H. (1987). Simulated annealing. In Simulated annealing: Theory and applications (pp. 7-15). Springer, Dordrecht. ↩︎

  14. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191. ↩︎

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值