智能优化算法——蛇优化算法和斑马优化算法
智能优化算法的两个关键机制
PSO | GA | SO | ZOA | |
信息载体 | 坐标 | 染色体 | 坐标 | 坐标 |
寻优策略 | 个体最佳、惯性、全局最佳 | 交叉、变异 | 寻找食物、移动到食物、战斗、交配 | 寻找食物、逃跑、聚集恐吓 |
蛇优化算法(SO)1
基本概念
SO 是受蛇的交配行为启发的“蛇优化”。
论文的思想是模拟蛇的生活习性:
- 如果当前蛇没有食物就会去寻找食物(远离一个随机的个体,或者是靠近它)
- 如果当前蛇有食物,就看当前的天气温度是怎么样的,如果温度是比较的高,将往食物的位置靠近(即向全局最佳适应度靠近)
- 如果当前蛇有食物且当前的温度比较的低,蛇就比较的活跃,就可能发生战斗或者是进行交配(这个是以一定概率发生的)
蛇的交配行为
雄性和雌性之间交配的发生受一些因素的控制。蛇在春末夏初温度较低的地方即寒冷地区交配,但交配过程不仅取决于温度,而且取决于食物的供应。如果气温低,食物充足;雄性竞争者会互相争斗以吸引雌性的注意力。雌性可以决定交配与否。如果交配发生,雌性开始在巢或洞穴中产卵,但一旦卵出现,它就离开。
算法流程
斑马优化算法(ZOA)2
在自然界斑马的群体生活行为中,两类行为最为重要:觅食和防御捕食者的策略。在觅食过程中,一只先锋斑马为其他斑马开辟了前往觅食的道路。因此,群体中的其他斑马在这只先锋斑马的引导下在平原上移动。
斑马对付捕食者的第一个策略是以“之”字形运动模式逃跑。还有一种是它们聚集在一起,试图迷惑或吓唬捕食者。这两种类型的斑马行为的数学建模是所提出的ZOA设计的基本灵感。
算法流程
斑马算法计算复杂性: O ( N ⋅ m ⋅ ( 1 + 2 ⋅ T ) ) O(N · m · (1 + 2 · T)) O(N⋅m⋅(1+2⋅T)).
测试样例
function1: F 3 ( x ) = ∑ i = 1 30 x i 2 F_3(x)={\sum^{30}_{i=1}x_i}^2 F3(x)=∑i=130xi2 x i ∈ [ − 100 , 100 ] x_i\in[-100,100] xi∈[−100,100]
function2:
F
1
(
x
)
=
∑
i
=
1
30
x
i
4
F_1(x)=\sum^{30}_{i=1}x_i^4
F1(x)=∑i=130xi4
x
i
∈
[
−
100
,
100
]
x_i\in[-100,100]
xi∈[−100,100]
function3:
function4:
滤波器耦合矩阵优化实验
通过三个智能优化算法(SO、ZO、WO(鲸鱼优化算法3))分别计算了老师给的前两个模型。
Optimization model based on Structure difference
最佳适应度和算法执行时间如下(1000次迭代):
响应图如下:
Optimization model based on Inverse eigenvalue problem (IEP)
最佳适应度和算法执行时间如下(1000次迭代):
响应图如下:
Hashim, F. A., & Hussien, A. G. (2022). Snake Optimizer: A novel meta-heuristic optimization algorithm.Knowledge-Based Systems, 108320. ↩︎
E. Trojovská, M. Dehghani and P. Trojovský, “Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm,” in IEEE Access, vol. 10, pp. 49445-49473, 2022, doi: 10.1109/ACCESS.2022.3172789. ↩︎
Seyedali Mirjalili, Andrew Lewis,The Whale Optimization Algorithm,Advances in Engineering Software,Volume 95,2016,Pages 51-67,ISSN 0965-9978,https://doi.org/10.1016/j.advengsoft.2016.01.008. ↩︎