LeetCode矩阵置零保证空间复杂度0(1)且简单易懂算法
问题
给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。
进阶:
一个直观的解决方案是使用 O(mn) 的额外空间,但这并不是一个好的解决方案。
一个简单的改进方案是使用 O(m + n) 的额外空间,但这仍然不是最好的解决方案。
你能想出一个仅使用常量空间的解决方案吗?
示例1
输入:matrix = [[1,1,1],[1,0,1],[1,1,1]]
输出:[[1,0,1],[0,0,0],[1,0,1]]
示例2
输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]]
问题分析:
该问题需要将矩阵中出现的0的行和列全部置为0,然后输出。最先开始考虑到的是两次遍历数组,第一次遍历将数组中为0的地方标记,第二次遍历则将标记处的行和列全部置为0即可,但是这样会造成浪费空间,不符合要求。
提升算法的空间复杂度不难,可以将第一行和第一列单独的进行分析,并且设立标志,先查看第一行和第一列的是否有0出现,有的话将标志置位true,然后代码中首先分析除过第一行和第一列的元素是否有0出现,若有0出现,则将对应的元素的首行和首列元素置0,通俗理解就是相当关于计数器,最后在来分析第一列和第一行的元素中是否有为0。
代码:
class Solution {
public:
void setZeroes(vector<vector<int>>& matrix) {
int m=matrix.size();
int n=matrix[0].size();
bool sign_x=false,sign_y=false;
for(int i=0;i<m;i++){
if(!matrix[i][0]) sign_y=true;
}
for(int i=0;i<n;i++){
if(!matrix[0][i]) sign_x=true;
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
if(!matrix[i][j]) matrix[i][0]=matrix[0][j]=0;
}
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
if(matrix[i][0]==0||matrix[0][j]==0) matrix[i][j]=0;
}
}
if(sign_x==true){
for(int i=0;i<n;i++){
matrix[0][i]=0;
}
}
if(sign_y==true){
for(int i=0;i<m;i++){
matrix[i][0]=0;
}
}
}
};
每天记录一点点,有错误麻烦大神批评指正!!!