vs2015+opencv440实现YOLOv4,并训练自己的数据集(完全零基础)

这篇博客详细介绍了如何在Windows上使用VS2015和OpenCV440从零开始搭建YOLOv4环境,包括安装配置、测试官方模型、训练自定义数据集的步骤,以及利用Python接口调用。适合深度学习初学者参考。
摘要由CSDN通过智能技术生成

vs2015+opencv440实现YOLOv4,并训练自己的数据集(完全零基础) 附:利用python接口进行调用

最近因为毕设需要,在研究深度学习目标检测的一些算法,具体算法的对比和特点就不详细说了,总之最终确定使用YOLOv4算法。作为深度学习小白,从零开始记录一下自己实现该算法的过程,并且方便自己将来使用。
目前网络上也有很多关于Windows实现YOLOv4的教程,但是总感觉很凌乱,需要不断对比才能找对真正可行的方法,因为本文是一个总结文,希望能给之后学习的人一些帮助。文中用到了一些其他人的程序和图片,我会全部标注原文链接,如有冒犯侵权请原作者联系我删除。

一、环境介绍

对于从零开始的小白,我们需要安装以下软件或环境

  1. VS2015 ,VS2015是我们用到的编译器,需要安装C++和python环境,python只有在我们训练自己的数据集时才用到;
  2. opencv440,opencv440是我们用到的图像处理库,opencv从440开始支持了YOLOv4,所以不要下载更低版本;
  3. NVIDIA驱动程序 ,能够让我们更好地利用自己的显卡;
  4. CUDA10.2 ,CUDA是NVIDIA推出的计算平台,能够基于NVIDIA显卡架构使用GPU进行复杂的图像运算;
  5. cuDNN,cuDNN是专门用于CUDA的神经网络加速包,与CUDA配合使用 ;
  6. YOLOv4相关配置文件

二、环境的具体搭建

  1. VS2015
    可以直接到官网 vs下载地址下载最新的2019社区版(社区版是可以免费试用的),其实不同版本差异并不大,都可以使用。发现自己没有网盘会员上传不了vs2015安装包,要是真的想用2015读者可以自行查找一下。
    下载完成以后,点击vs_community.exe程序安装。
    选择安装路径和自定义安装
    在选择功能中选择 C++和python进行安装。接下来耐心等待到安装完成即可。
  2. opencv440
    链接:https://pan.baidu.com/s/1eUb8oJJS22YwXzWsySki1A
    提取码:qdpt
    下载完成后,进行安装,具体的安装教程可以参考另外一位博主的文章,下面给出链接。opencv安装与环境配置
  3. NVIDIA驱动程序+CUDA+cuDNN
    CUDA与cuDNN的安装教程,参考文章。NVIDIA驱动程序CUDA+cuDNN安装教程
  4. YOLOv4相关配置文件
    链接:https://pan.baidu.com/s/1oh36WVqsBmr3_oC7JGBxeg
    提取码:erx3
    直接下载这么相关文件。

三、官方模型权重测试

以上环境全部搭建成功以后,就可以进行代码的测试了。在我们下载的YOLOv4相关配置文件中已经给出了测试要用到的代码opencv4_yolov4.cpp。我们新建一个C++项目
在这里插入图片描述
将主程序替换成opencv4_yolov4.cpp,并在程序所在位置新建两个文件夹model和image,如图。在这里插入图片描述
直接点击运行即可。
tips:
1.将模式修改为release x64
2.每新建一个程序,若要使用opencv库,都要重新在该程序中进行进行一次opencv环境的配置。

四、训练自己的数据集

4.1 下载darknet-master

训练自己的YOLOv4数据集的时候就需要用到原作者编写的darknet-master了,这里用到的是C语言编写的,可以到原作者的github直接下载。darknet下载地址

4.2 Demo测试

接下来可以参考这篇文章darknet测试的第二、第三两部分,完成简单的demo测试。但是不参考他的第四部分,他的这一部分比较混乱,加下来我会单独进行介绍。

4.3 标注自己的数据集

本文使用labelImg软件进行标注,下载地址使用教程
标注完成后,我们得到一系列xml文件。
tips: 我们的图片最好使用六位数字进行命名
在这里插入图片描述
在这里插入图片描述

4.4 训练自己的数据集

4.4.1 创建文件目录

首先在D:\darknet-master\build\darknet目录下新建一个myData文件夹
在这里插入图片描述
在myData文件夹下,新建Annotations、Images、ImageSets文件夹,在ImageSets下新建Main文件夹,并在myData下放入之前下载的预训练文件yolov4.conv.137。
在这里插入图片描述
在Images文件中存放我们的图片文件,在Annotations文件夹中存放图片对应的xml文件。

4.4.2 划分数据集

接下来在myData文件夹下新建test.py程序,程序代码如下,并运行。

import os
import random

trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets\Main'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('ImageSets/Main/trainval.txt', 'w')
ftest = open
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值