NOIP 2001 一元三次方程求解(二分||盛金公式)

题目描述

有形如:ax3+bx2+cx+d=0这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,d均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差的绝对值>=1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后2位。 
提示:记方程f(x)=0,若存在2个数x1和x2,且x1<x2,f(x1)*f(x2)<0,则在(x1,x2)之间一定有一个根。 
 

输入

每个测试文件只包含一组测试数据,每组输入四个实数a,b,c,d,表示一元三次方程中的各项的系数。 

 

输出

对于每组输入数据,由小到大依次在同一行输出这三个实根(根与根之间留有一个空格),并精确到小数点后2位。 
 

解法一:一个实根的左右两个点的乘积一定是<0的 那么其实也就满足了单调性,可以用二分求解,不断二分直到根的位置。

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cctype>
#include<cstring>
#include<utility>
#include<cstdlib>
#include<iomanip>
#include<iostream>
#include<algorithm>
#define Clear(x) memset(x,0,sizeof(x))
#define fup(i,a,b) for(int i=a;i<b;i++)
#define rfup(i,a,b) for(int i=a;i<=b;i++)
#define fdn(i,a,b) for(int i=a;i>b;i--)
#define rfdn(i,a,b) for(int i=a;i>=b;i--)
typedef long long ll;
using namespace std;
const int maxn = 1e+2;
const int inf = 0x3f3f3f3f;
const double pi=acos(-1.0);
const double eps = 1e-3;
double a,b,c,d;

double calc(double x)
{
    return a*x*x*x+b*x*x+c*x+d;
}

void slove()
{
    double l,r;
    int cnt=0;
    for(int i=-100;i<=100;i++)
    {
        l=i*1.0,r=(i+1)*1.0;
        if(calc(l)==0){
            printf("%.2lf ",l);
            cnt++;
        }
        else if(calc(l)*calc(r)<0){
            while(r-l>=eps){
                double mid=(l+r)/2.0;
                if(calc(mid)*calc(l)<0)
                    r=mid;
                else l=mid;
            }
            printf("%.2lf ",l);
        }
        if(cnt==3) break;
    }
    printf("\n");
}

int main()
{
    scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
    slove();
    return 0;
}

 

方法二:范盛金公式

参考百度百科

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cctype>
#include<cstring>
#include<utility>
#include<cstdlib>
#include<iomanip>
#include<iostream>
#include<algorithm>
#define Clear(x) memset(x,0,sizeof(x))
#define fup(i,a,b) for(int i=a;i<b;i++)
#define rfup(i,a,b) for(int i=a;i<=b;i++)
#define fdn(i,a,b) for(int i=a;i>b;i--)
#define rfdn(i,a,b) for(int i=a;i>=b;i--)
typedef long long ll;
using namespace std;
const int maxn = 1e+2;
const int inf = 0x3f3f3f3f;
const double pi=acos(-1.0);
const double eps = 1e-3;
double a,b,c,d;
/**
盛金公式
*/

int main()
{
    double x1,x2,x3,temp;
    scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
    double A=b*b-3*a*c;
    double B=b*c-9*a*d;
    double C=c*c-3*b*d;
    double del=B*B-4*A*C;
    //Δ=B2-4AC>0时是虚根
    if(A==B&&A==0)
    {
        x1=x2=x3=-b/(3*a);
    }else if(del==0){
        x1=-b/a+B/A;
        x2=x3=(-B/A)/2;
    }else if(del<0){
        double T=(2*A*b-3*a*B)/(2*A*sqrt(A));
        double _xt=acos(T);
        double xt=_xt/3;
        x1=(-b-2*sqrt(A)*cos(xt))/(3*a);
        x2=(-b+sqrt(A)*(cos(xt)+sqrt(3)*sin(xt)))/(3*a);
        x3=(-b+sqrt(A)*(cos(xt)-sqrt(3)*sin(xt)))/(3*a);
    }
    if(x1>x2)
    {
        temp=x1;
        x1=x2;
        x2=temp;
    }
    if(x1>x3)
    {
        temp=x3;
        x3=x1;
        x1=temp;
    }
    if(x2>x3)
    {
        temp=x3;
        x3=x2;
        x2=temp;
    }
    printf("%.2lf %.2lf %.2lf\n",x1,x2,x3);
    return 0;
}

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 一元三次方程是指形如ax^3+bx^2+cx+d=的方程,其中a、b、c、d都是已知常数,x是未知数。 求解一元三次方程的一般步骤如下: 1. 将方程化为标准形式,即将x^3系数化为1,即可得到x^3+px^2+qx+r=的形式。 2. 通过代数运算,将方程化为一个二次方程和一个一次方程的组合形式,即x^3+px^2+qx+r=(x-a)(x^2+bx+c)的形式。 3. 解出二次方程x^2+bx+c=的两个根,即可得到三次方程的三个根,分别为a和二次方程的两个根。 求解一元三次方程的具体方法有很多,可以使用牛顿迭代法、三分法、高斯消元法等。在NOI竞赛中,一般使用高斯消元法来求解一元三次方程。 ### 回答2: 一元三次方程是指形如ax³+bx²+cx+d=0的方程,其中a、b、c、d都是已知系数,x是未知数。这是一个高阶多项式方程,求解方法也比较复杂。下面介绍一种较为常用的三次方程求解方法——套用“因式分解法”: 1. 将三次方程写成“因式分解”的形式,即(ax+b)(cx²+ex+f)=0,其中a、b、c、e、f都是已知系数,x是未知数。 2. 将第二个括号展开,得到cx³+(e+a)c²x+(f+ae+b)c+be=0。 3. 令y=cx,即方程变成了一个一元二次方程:y²+(e+a)y+(f+ae+b)c/be=0。 4. 解出y,再回代得到x的值。 需要注意的是,如果三次方程有重根或虚根,以上方法不适用,需要采用其他的求解方式。除此之外,还可以利用“维达定理”或牛顿迭代法等算法进行求解。 总之,求解一元三次方程需要掌握多种方法,根据具体情况选择合适的方法进行求解。在解题的过程中,要注意化简、观察特征、分析符号及系数等问题,同时也需要熟悉求根公式和基本的代数计算方法,才能顺利解决问题。 ### 回答3: 一元三次方程是指形如ax^3+bx^2+cx+d=0的方程,其中a、b、c、d为系数,x为未知数。解一元三次方程是高中数学中的一项重要内容,也是竞赛中常出现的题型。 解一元三次方程的方法有很多种,其中比较常用的有以下几种: 1.牛顿迭代法。该方法通常用于求解非线性方程,使用重复求解近似解的方法逼近准确解。但需要注意的是,该方法需要计算一定的导数,因此不太方便手工计算。 2.公式法。一元三次方程也有和一元二次方程一样的求根公式,但通常需要做一定的化简。比如,可以利用单项式恒等变形把一元三次方程化为一元二次方程,然后使用公式求解。 3.因式分解法。有些一元三次方程可以通过因式分解得到解,比如x^3-8=0,可以分解为(x-2)(x^2+2x+4)=0,从而得到三个解x=2、x=-1+i√3、x=-1-i√3。 4.牛顿-拉弗森法。该方法也是一种迭代方法,通常用于求根问题。但由于需要计算导数,因此不太适合手工计算。 总之,解一元三次方程需要根据具体情况选择合适的方法,并且需要注意精度问题,避免出现误差过大的情况。在竞赛中,还需要注意时间限制,尽量选择快速有效的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值