逻辑回归阶段概述

一、逻辑回归

1、逻辑回归解决的是二分类问题

2、逻辑回归的输入就是线性回归的输出

3、激活函数:sigmoid函数

回归的结果输入到sigmoid函数当中,输出结果:[0, 1]区间中的一个概率值,默认为0.5为阈值

阈值意义(默认阈值为0.5):因为逻辑回归解决的是二分类的问题,假如分成A和B两个类,如果一个样本的逻辑回归输出为0.6,0.6大于0.5的阈值所以它就是A类别的,所以只要样本的逻辑回归输出大于0.5那么就是A类别,如果样本的逻辑回归输出小于0.5那么就是B类别的样本。

4、逻辑回归运算过程:

二、损失和优化 

对数似然损失:

实际带入:

h(x)为样本的逻辑回归结果, 对数似然损失函数是分段函数,对于真实结果y=1和y=0分别带入求误差,最终的计算结果久是其损失值。

优化:同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。

三、癌症分类预测-良/恶性乳腺癌肿瘤预测

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# 1.获取数据
names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',
                   'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',
                   'Normal Nucleoli', 'Mitoses', 'Class']

data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",
                  names=names)
data.head()
# 2.基本数据处理
# 2.1 缺失值处理
data = data.replace(to_replace="?", value=np.NaN)
data = data.dropna()
# 2.2 确定特征值,目标值
x = data.iloc[:, 1:10]
y = data["Class"]
# 2.3 分割数据
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)
# 3.特征工程(标准化)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
# 4.机器学习(逻辑回归)
estimator = LogisticRegression()
estimator.fit(x_train, y_train)
# 5.模型评估
y_predict = estimator.predict(x_test)
score=estimator.score(x_test, y_test)
print(score)

四、分类评估方法 

混淆矩阵:

1、精确率:预测结果为正例样本中真实为正例的比例    -------  TP/(TP+FP)

2、召回率:真实为正例的样本中预测结果为正例的比例 -------  TP/(TP+FN)

3、F1-score:

五、ROC曲线与AUC指标

1、TPR与FPR

TPR = TP / (TP + FN)  ------  所有真实类别为1的样本中,预测类别为1的比例

FPR = FP / (FP + TN)  ------  所有真实类别为0的样本中,预测类别为1的比例

2、ROC曲线 

如图

如图横坐标为FPR,纵坐标为TPR,左上角的点(TPR=1,FPR=0),为完美分类,也就是全对;点A(TPR>FPR),A的判断大体是正确的。中线上的点B(TPR=FPR),也就是B全都是蒙的,蒙对一半,蒙错一半;下半平面的点C(TPR<FPR),这个点类似要反着来理解,它说对你要理解为错的这样正确率才会高。

3、AUC值定义

        AUC值为ROC曲线所覆盖的区域面积,显然,AUC越大,分类器分类效果越好。

  AUC = 1,是完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。

  0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。

  AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。

  AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。

 

六、如何绘制ROC曲线

假设有6次展示记录,有两次被点击了,得到一个展示序列(1:1,2:0,3:1,4:0,5:0,6:0),前面的表示序号,后面的表示点击(1)或没有点击(0)。

然后在这6次展示的时候都通过model算出了点击的概率序列

原序列( 1:1 , 2:0 , 3:1 , 4:0 , 5:0 , 6:0 )

110000
0.90.80.70.60.50.4

阈值为0.75

真实结果正例2,假例结果 4

绘制的步骤是:

1)把概率序列从高到低排序,得到顺序( 1:0.9 , 3:0.8 , 2:0.7 , 4:0.6 , 5:0.5 , 6:0.4 );

2)从概率最大开始取一个点作为正类,取到点1,计算得到TPR=0.5,FPR=0.0;

3)从概率最大开始,再取一个点作为正类,取到点3,计算得到TPR=1.0,FPR=0.0;

4)再从最大开始取一个点作为正类,取到点2,计算得到TPR=1.0,FPR=0.25;

5)以此类推,得到6对TPR和FPR。

然后把这6对数据组成6个点(0,0.5),(0,1.0),(0.25,1),(0.5,1),(0.75,1),(1.0,1.0)。

这6个点在二维坐标系中能绘出来。

七、API介绍

  • sklearn.linear_model.LogisticRegression(solver='liblinear', penalty=‘l2’, C = 1.0)

    • solver可选参数:{'liblinear', 'sag', 'saga','newton-cg', 'lbfgs'},

      • 默认: 'liblinear';用于优化问题的算法。
      • 对于小数据集来说,“liblinear”是个不错的选择,而“sag”和'saga'对于大型数据集会更快。

      • 对于多类问题,只有'newton-cg', 'sag', 'saga'和'lbfgs'可以处理多项损失;“liblinear”仅限于“one-versus-rest”分类。

    • penalty:正则化的种类

    • C:正则化力度

LogisticRegression方法相当于 SGDClassifier(loss="log", penalty=" "),SGDClassifier实现了一个普通的随机梯度下降学习。而使用LogisticRegression(实现了SAG)

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值