决策树算法归纳总结

决策树:是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果,本质是一颗由多个判断节点组成的树

一、熵

系统越有序,熵值越低;系统越混乱或者分散,熵值越高

(1)从信息的完整性上进行的描述:

当系统的有序状态一致时,数据越集中的地方熵值越小,数据越分散的地方熵值越大。

(2)从信息的有序性上进行的描述:

当数据量一致时,系统越有序,熵值越低;系统越混乱或者分散,熵值越高。

(3)信息熵

假如事件A的分类划分是(A1,A2,...,An),每部分发生的概率是(p1,p2,...,pn),那信息熵定义为公式如下:

 注:每个事件概率相同时,熵最大,这件事越不确定。

二、信息增益(决策树的划分依据之一)------IDE3决策树

信息增益:以某特征划分数据集前后的熵的差值。熵可以表示样本集合的不确定性,熵越大,样本的不确定性就越大。因此可以使用划分前后集合熵的差值来衡量使用当前特征对于样本集合D划分效果的好坏。

信息增益 = entroy(前) - entroy(后)

例子:性别和活跃度两个特征,哪个对用户流失影响更大

整体熵:

性别熵:

性别信息增益:

活跃度熵:

活跃度信息增益:

结论:活跃度的信息增益比性别的信息增益大,也就是说,活跃度对用户流失的影响比性别大。

信息增益率

三、信息增益率(决策树的划分依据之二)------C4.5决策树

增益率:增益比率度量是用前面的增益度量Gain(S,A)和所分离信息度量SplitInformation(如上例的性别,活跃度等)的比值来共同定义的。

信息熵(ID3)、信息增益(C4.5)、基尼值和基尼指数_lian740930980的博客-CSDN博客_id3信息增益1、信息熵熵 Entropy是“混乱”程度的量度。系统越有序,熵值越低;系统越混乱或者分散,熵值越高。信息理论:1、从信息的完整性上进行的描述:当系统的有序状态一致时,数据越集中的地方熵值越小,数据越分散的地方熵值越大。2、从信息的有序性上进行的描述:当数据量一致时,系统越有序,熵值越低;系统越混乱或者分散,熵值越高。2、信息增益(决策树的划分依据1)信息增益:以某特征划分数据集前后的熵的差值。熵可以表示样本集合的不确定性,熵越大,样本的不确定性就越大。因此可以使用划分前.https://blog.csdn.net/lian740930980/article/details/115634940 

四、基尼值

基尼值Gini(D):从数据集D中随机抽取两个样本,其类别标记不一致的概率。故,Gini(D)值越小,数据集D的纯度越高。(Pk为概率) 

五、基尼指数

基尼指数Gini_index(D):一般,选择使划分后基尼系数最小的属性作为最优化分属性

 基尼增益:选取基尼增益最大的点,进行优化划分。

例子:

1、对数据集非类标号属性{是否有房,婚姻状况,年收入}分别计算它们的Gini系数增益,取Gini系数增益值最大的属性作为决策树的根节点属性。

2、根节点的Gini系数为:

 3、当根据是否有房来进行划分时,Gini系数增益计算过程为: 

 4、若按婚姻状况属性来划分,属性婚姻状况有三个可能的取值{married,single,divorced},分别计算划分后的Gini系数增益。 

分组为{married} | {single,divorced}时:

当分组为{single} | {married,divorced}时: 

当分组为{divorced} | {single,married}时: 

对比计算结果,根据婚姻状况属性来划分根节点时取Gini系数增益最大的分组作为划分结果,即:{married} | {single,divorced} 

5、同理可得年收入Gini:

 最大化增益等价于最小化子女结点的不纯性度量(Gini系数)的加权平均值,现在我们希望最大化Gini系数的增益。

三个属性划分根节点的增益最大的有两个:

                                          婚姻状况:分组为{married} | {single,divorced}Gini系数的增益为0.12

                                          年收入属性:当年收入节点为97.5时Gini系数的增益为0.12

此时,选取首先出现的属性作为第一次划分

接下来,采用同样的方法,分别计算剩下属性,其中根节点的Gini系数为(此时是否拖欠贷款的各有3个records)

 对于是否有房属性,可得:

对于年收入属性则有:

  

6、小结

(1)决策树构建的基本步骤如下

  1. 开始将所有记录看作一个节点

  2. 遍历每个变量的每一种分割方式,找到最好的分割点

  3. 分割成两个节点N1和N2

  4. 对N1和N2分别继续执行2-3步,直到每个节点足够“纯”为止。

(2)决策树的变量可以有两种

  1. 数字型(Numeric):变量类型是整数或浮点数,如前面例子中的“年收入”。用“>=”,“>”,“<”或“<=”作为分割条件(排序后,利用已有的分割情况,可以优化分割算法的时间复杂度)。

  2. 名称型(Nominal):类似编程语言中的枚举类型,变量只能从有限的选项中选取,比如前面例子中的“婚姻情况”,只能是“单身”,“已婚”或“离婚”,使用“=”来分割。

(3)如何评估分割点的好坏?

​ 如果一个分割点可以将当前的所有节点分为两类,使得每一类都很“纯”,也就是同一类的记录较多,那么就是一个好分割点。

​ 比如上面的例子,“拥有房产”,可以将记录分成了两类,“是”的节点全部都可以偿还债务,非常“纯”;“否”的节点,可以偿还贷款和无法偿还贷款的人都有,不是很“纯”,但是两个节点加起来的纯度之和与原始节点的纯度之差最大,所以按照这种方法分割。构建决策树采用贪心算法,只考虑当前纯度差最大的情况作为分割点。

六、CART剪枝

七、特征提取 

1、字典特征提取

对字典数据进行特征值化

  • sklearn.feature_extraction.DictVectorizer(sparse=True,…)
    • DictVectorizer.fit_transform(X)
      • X:字典或者包含字典的迭代器返回值
      • 返回sparse矩阵
    • DictVectorizer.get_feature_names() 返回类别名称
from sklearn.feature_extraction import DictVectorizer


def dict_demo():
    """
    对字典类型的数据进行特征抽取
    :return: None
    """
    data = [{'city': '北京', 'temperature': 100}, {'city': '上海', 'temperature': 60}, {'city': '深圳', 'temperature': 30}]
    # 1、实例化一个转换器类
    transfer = DictVectorizer(sparse=False)
    # 2、调用fit_transform
    data = transfer.fit_transform(data)
    print("返回的结果:\n", data)
    # 打印特征名字
    print("特征名字:\n", transfer.get_feature_names())

    
if __name__ == '__main__':
    dict_demo()

"""
返回的结果:
 [[  0.   1.   0. 100.]
 [  1.   0.   0.  60.]
 [  0.   0.   1.  30.]]
特征名字:
 ['city=上海', 'city=北京', 'city=深圳', 'temperature']
"""
# 没有加上sparse=False参数的结果,即默认为True
"""
返回的结果:
   (0, 1)	1.0
  (0, 3)	100.0
  (1, 0)	1.0
  (1, 3)	60.0
  (2, 2)	1.0
  (2, 3)	30.0
特征名字:
 ['city=上海', 'city=北京', 'city=深圳', 'temperature']
"""

 

2、文本特征提取

作用:对文本数据进行特征值化

  • sklearn.feature_extraction.text.CountVectorizer(stop_words=[])

    • 返回词频矩阵
    • CountVectorizer.fit_transform(X)
      • X:文本或者包含文本字符串的可迭代对象
      • 返回值:返回sparse矩阵
    • CountVectorizer.get_feature_names() 返回值:单词列表
  • sklearn.feature_extraction.text.TfidfVectorizer

(1)英文文本

from sklearn.feature_extraction.text import CountVectorizer


def text_count_demo():
    """
    对文本进行特征抽取,countvetorizer
    :return: None
    """
    data = ["life is short,i like like python", "life is too long,i dislike python"]
    # 1、实例化一个转换器类
    transfer = CountVectorizer()
    '''
    transfer = CountVectorizer(stop_words="dislike")    停用dislike这个单词,不进行统计
    transfer = CountVectorizer(sparse=False)            注意,没有sparse这个参数
    '''
    # 2、调用fit_transform
    data = transfer.fit_transform(data)
    print(data)  # 打印sparse矩阵
    print("文本特征抽取的结果:\n", data.toarray())  # 打印矩阵 0/1/2表示特征值在一句话中出现的概率
    print("返回特征名字:\n", transfer.get_feature_names())  # 返回单词列表


if __name__ == '__main__':
    text_count_demo()

"""
  (0, 2)	1
  (0, 1)	1
  (0, 6)	1
  (0, 3)	2
  (0, 5)	1
  (1, 2)	1
  (1, 1)	1
  (1, 5)	1
  (1, 7)	1
  (1, 4)	1
  (1, 0)	1
文本特征抽取的结果:
 [[0 1 1 2 0 1 1 0]
 [1 1 1 0 1 1 0 1]]
返回特征名字:
 ['dislike', 'is', 'life', 'like', 'long', 'python', 'short', 'too']
 """

(2)中文文本

  • jieba.cut()
    • 返回词语组成的生成器
  • 分析
    • 准备句子,利用jieba.cut进行分词
    • 实例化CountVectorizer
    • 将分词结果变成字符串当作fit_transform的输入值 
from sklearn.feature_extraction.text import CountVectorizer
import jieba


def cut_word(text):
    """
    对中文进行分词
    "我爱北京天安门"————>"我 爱 北京 天安门"
    :param text:
    :return: text
    """
    # 用结巴对中文字符串进行分词
    text = " ".join(list(jieba.cut(text)))

    return text


def text_chinese_count_demo2():
    """
    对中文进行特征抽取
    :return: None
    """
    data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
            "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
            "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]
    # 将原始数据转换成分好词的形式
    text_list = []
    for sent in data:
        text_list.append(cut_word(sent))
    print(text_list)

    # 1、实例化一个转换器类
    # transfer = CountVectorizer(sparse=False)
    transfer = CountVectorizer()
    # 2、调用fit_transform
    data = transfer.fit_transform(text_list)
    print("文本特征抽取的结果:\n", data.toarray())
    print("返回特征名字:\n", transfer.get_feature_names())


if __name__ == '__main__':
    text_chinese_count_demo2()

 输出结果:

Building prefix dict from the default dictionary ...
Dumping model to file cache /var/folders/mz/tzf2l3sx4rgg6qpglfb035_r0000gn/T/jieba.cache
Loading model cost 1.032 seconds.
['一种 还是 一种 今天 很 残酷 , 明天 更 残酷 , 后天 很 美好 , 但 绝对 大部分 是 死 在 明天 晚上 , 所以 每个 人 不要 放弃 今天 。', '我们 看到 的 从 很 远 星系 来 的 光是在 几百万年 之前 发出 的 , 这样 当 我们 看到 宇宙 时 , 我们 是 在 看 它 的 过去 。', '如果 只用 一种 方式 了解 某样 事物 , 你 就 不会 真正 了解 它 。 了解 事物 真正 含义 的 秘密 取决于 如何 将 其 与 我们 所 了解 的 事物 相 联系 。']
Prefix dict has been built succesfully.
文本特征抽取的结果:
 [[2 0 1 0 0 0 2 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 2 0 1 0 2 1 0 0 0 1 1 0 0 1 0]
 [0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 3 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 1 0 1]
 [1 1 0 0 4 3 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 2 1 0 0 1 0 0 0]]
返回特征名字:
 ['一种', '不会', '不要', '之前', '了解', '事物', '今天', '光是在', '几百万年', '发出', '取决于', '只用', '后天', '含义', '大部分', '如何', '如果', '宇宙', '我们', '所以', '放弃', '方式', '明天', '星系', '晚上', '某样', '残酷', '每个', '看到', '真正', '秘密', '绝对', '美好', '联系', '过去', '还是', '这样']

八、案例:泰坦尼克号乘客生存预测

  • class sklearn.tree.DecisionTreeClassifier(criterion=’gini’,max_depth=None,random_state=None)
    • criterion
      • 特征选择标准
      • "gini"或者"entropy",前者代表基尼系数,后者代表信息增益。一默认"gini",即CART算法。
    • min_samples_split
      • 内部节点再划分所需最小样本数
      • 这个值限制了子树继续划分的条件,如果某节点的样本数少于min_samples_split,则不会继续再尝试选择最优特征来进行划分。 默认是2.如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。我之前的一个项目例子,有大概10万样本,建立决策树时,我选择了min_samples_split=10。可以作为参考。
    • min_samples_leaf
      • 叶子节点最少样本数
      • 这个值限制了叶子节点最少的样本数,如果某叶子节点数目小于样本数,则会和兄弟节点一起被剪枝。 默认是1,可以输入最少的样本数的整数,或者最少样本数占样本总数的百分比。如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。之前的10万样本项目使用min_samples_leaf的值为5,仅供参考。
    • max_depth
      • 决策树最大深度
      • 决策树的最大深度,默认可以不输入,如果不输入的话,决策树在建立子树的时候不会限制子树的深度。一般来说,数据少或者特征少的时候可以不管这个值。如果模型样本量多,特征也多的情况下,推荐限制这个最大深度,具体的取值取决于数据的分布。常用的可以取值10-100之间
    • random_state
      • 随机数种子

案例实例:

简单粗暴理解与实现机器学习之决策树算法(五):决策树算法案例——泰坦尼克号乘客生存预测(附github数据、源代码)、决策树可视化_汪雯琦的博客-CSDN博客_基于决策树预测github 

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值