Stable Diffusion|线稿上色/图片转3D模型

今天分享一个线稿上色的小教程。最近我一直在尝试在完成线稿上色后,如何使用同一张已经上色的图片生成多种姿势。虽然我原本打算在本文中分享这个方法,但是最终效果并不理想,所以后续如果有更好的解决方案,再跟大家分享。如果各位有好的解决方法,欢迎交流,感谢~

今天就分享一个如何用Stable Diffusion给线稿图上色,还有怎么将图片转为3D模型的小分享。(文末扫码可获取相关资料)

1

前期准备

1. 本文需要用到ControlNet插件,如果已经安装了的需要将其升级到最新的版本,如未安装的需要去安装一下,然后下载相关的模型。(安装方法就不一一介绍啦,如果有任何疑问或问题可以在公众号后台私聊我)

2. 需要准备一张线稿图,线稿尽量清晰。

2

线稿上色

1. 打开Stable Diffusion,“启用”ControlNet并且勾选“完美像素模式”,然后上传线稿图片。

2. ControlNet模型选择“Lineart”,预处理器选择“invert”,然后控制权重这里可以根据自己的需求调节一下。

3. 设置好ControlNet之后,选择一个大模型,然后输入正向提示词和反向提示词。

我这里选择的大模型是“revAnimated”然后用了一个“blindbox”lora,如果要将线稿转为3D图片可以用我这个大模型和lora,如果要转为其他的风格,大模型以及lora可以自己随意搭配。

revAnimated”大模型以及“blindbox”lora都可以在“liblib”或“Civitai”上下载。(在这里感谢两位模型作者的分享,谢谢!)

正向提示词可以描述一下画面的内容,然后反向提示词用一个通用的即可。

4. 设置生成参数。尺寸建议按线稿图片的比例设置,其他的参数可以根据自己的需求更改。

5. 设置好以上的参数之后,点击“生成”即可。这里可能需要花费一些时间,可以将总批次数调多一些,生成多张图片,然后挑选一张自己满意的。

3

图片转3D模型

这里再推荐一个图片转3D模型的网站,但是目前的效果还是不太好,不过可以拿来当参考用。

它叫“CSM”(https://www.csm.ai/)

它可以将图片转换为3D,目前免费也可以用,也有订阅的功能。

1. 打开“CSM”(https://www.csm.ai/),点击右上角“Get Started”注册登录即可,如果不想在网页使用的也可以在“Discord”使用。

2. 注册完成之后,将会进到一个类似工作台的一个页面,然后点击左上角的“Generate 3D Model”上传一张图片,可能需要稍等一会儿。

3. 上传完成之后,点击图片进入生成3D模型页面,它会先生成一个四视图。

4. 点击右上角的“Generate”生成3D模型即可,在“Generate”旁边有个模型选择的下拉框,这里可以选择其他的模型,有的模型可能需要订阅才能使用。

5. 目前看到的效果还是很烂很烂很粗糙的,不过没事儿,我们再继续点击右上角的按钮“Refine Mesh”按钮,看看最终的效果。

6. 生成完成了,最后一步需要比较长的时间…我大概等了半小时才完成,目前来看效果比上一步好了很多。确认完之后点击右上角的“Share”按钮,可以选择导出格式。

虽然生成的模型还不能直接使用,但是可以当作参考来用。
文章使用的AI绘画SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,有需要的小伙伴文末扫码自行获取。

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
<think>嗯,用户想获取关于蓝桥杯视觉设计专项比赛的备赛经验和技巧。首先,我需要整理一下已有的信息。根据提供的引用内容,蓝桥杯视觉设计专项赛道包括UI设计类和AIGC赛道,允许使用AIGC工具,采用命题形式。省赛和国赛的获奖比例也有所提及,还有官方备赛活动如直播讲座、算法双周赛和模拟赛。用户可能想知道如何有效备赛,尤其是在UI设计和AIGC应用方面。 接下来,我得考虑用户可能的背景。可能是设计专业的学生,或者对视觉设计感兴趣但经验不足的参赛者。他们可能需要具体的技巧,比如如何选题、使用哪些工具、时间管理方法等。此外,用户可能还关心如何结合AIGC工具提升作品质量,以及如何准备命题形式的比赛。 需要确保回答结构清晰,分点说明。比如,备赛策略可以分为基础能力、工具掌握、命题分析等。还要结合引用中的信息,比如官方备赛活动,推荐参与直播讲座和模拟赛。同时,引用提到的“双重驱动”可能暗示时间管理和目标设定的重要性,可以融入备赛建议中。 另外,用户可能希望了解评审标准,比如创意、技术实现、用户体验等,这些都需要涵盖。还要注意可能的问题,比如如何在有限时间内高效备赛,如何处理命题的多样性,以及如何平衡原创性和AIGC工具的使用。 需要确保回答中的建议具体可行,例如推荐学习哪些软件,如何分析往届作品,如何制定时间表等。同时,可能需要注意避免过于宽泛的建议,提供实际案例或步骤,帮助用户实际操作。例如,在工具使用部分,可以提到具体的设计软件和AIGC工具,如Photoshop、MidJourney等,并说明如何结合使用。 最后,生成的相关问题需要与用户的需求紧密相关,可能包括如何选择工具、如何优化工作流程、如何处理命题限制等。确保问题覆盖用户可能进一步探索的方向,帮助他们深入备赛。</think># 蓝桥杯视觉设计专项备赛经验与技巧 ## 一、备赛核心策略 1. **双线能力培养** - 基础设计能力:强化$UI$设计规范(如栅格系统、色彩搭配、交互逻辑) - $AIGC$工具链:掌握$MidJourney$提示词工程、$Stable Diffusion$模型微调、$Photoshop$$\beta$生成式填充[^1] 2. **命题解析方法** $$命题分析模型=主题关键词\times技术约束\times评审维度$$ 通过逆向工程分析往届获奖作品,建立主题关键词映射表(如"智慧校园"对应物联网+扁平化风格) ## 二、工具应用技巧 | 工具类型 | 推荐工具 | 应用场景 | |----------------|------------------------------|--------------------------| | 设计软件 | Figma/Adobe XD | 高保真原型制作 | | $AIGC$工具 | MidJourney v6/Stable Diffusion XL | 素材生成、风格探索 | | 3D辅助 | Blender+AI渲染插件 | 立体元素快速建模 | **代码片段示例(AI工具调用):** ```python # Stable Diffusion API调用示例 import requests payload = { "prompt": "cyberpunk interface, neon glow, 8k", "steps": 30, "cfg_scale": 12 } response = requests.post("https://api.stability.ai/v1/generation/...", headers=headers, json=payload) ``` ## 三、时间管理方案 1. **阶段划分** - 基础期(1-2月):完成$20+$个小场景临摹 - 强化期(1月):参与官方模拟赛[^1],每周产出$3-5$个完整方案 - 冲刺期(2周):建立个人素材库(含$100+$个$AI$生成组件) 2. **每日训练法** $$每日任务量=2小时技能训练+1小时案例解析+0.5小时工具探索$$ ## 四、评审得分要点 1. **创新性维度** - 使用$AI$生成$30\%$以上新视觉元素 - 传统设计手法与$AIGC$的有机融合(如手绘线稿+AI上色) 2. **技术实现** - 提交作品包必须包含$PSD$源文件+$AI$生成记录[^2] - 动态作品需提供交互流程图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值