Stable Diffusion也可以进行创成式填充了

不久前,Adobe官方颁布了更为严格的政策,导致市面上所有ps ai爱国版均被封杀,无一幸免。其中,让许多人感到惋惜的是ps ai的创造性填充功能。不过,无需担心,今天我们将向您展示如何通过Stable Diffusion一键拓展画面。

首先,需要明确放大和扩展是两个截然不同的概念。放大指的是对原有画面进行优化和扩大,例如高清修复或添加功能,而扩展则是在增加画面的同时,向其中引入新的内容元素。我们今天介绍的Stable Diffusion(sd扩图)属于后者。

我们建议在文生图界面完成sd扩图,因为图生图可能对画面进行较大的改变,不太推荐使用。

进入文生图界面,输入提示词以随机生成四张512×768的图片,然后从中选择一张最令人满意的。哈哈哈,尽管我的手艺可能有些问题,但修手并非今天的主题,我们先跳过这部分。

在controlnet中选择一张相对令人满意的图片,将其拖入,并启用完美像素模式。如果显存低于8GB,建议勾选低显存模式。

在控制类型(Control Type)中,选择局部绘制(Inpaint)。请留意,预处理器需要选择inpaint_only+lama,而模型则选择control_v11p_sd15 inpaint。

在进行设置时,请选择“ControlNet is more important”作为控制类型(Control Mode),而在缩放模式上务必选择“Resize and Fill”(缩放后填充空白)。

现在,所有设置已就绪,下一步我们将对图像进行调整,将其尺寸修改为1000×768,并增加宽度。

随后,我们对图像进行调整,将其尺寸更改为512×1200,并增加高度。

在同时增加宽度和高度的过程中,我们将图像的尺寸调整为1000×1000。

许多伙伴可能会观察到,在扩展后,图像的光影关系可能不太理想,或者尺寸过小而显得模糊。这时候,我们可以将图像发送至图生图,继续进行图像拟合处理以及更进一步的放大。这一步骤就交给大家自行操作了。

大家可以进行效果对比,我个人对这个结果感到非常满意。与ps ai的创造性填充不相上下,而且可控性更强,没有任何限制!

所有的AI设计工具,模型和插件,都已经整理好了,文末扫码即可获取。

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
稳定扩散(Stable Diffusion)通常指的是一种用于生成图像的技术,它基于概率模型和深度学习,例如在文本文档转换成图像时提供强大的创造力。虽然这种技术在图像生成方面确实展现出令人惊叹的能力,但其核心原理与Adobe Photoshop等传统图形处理软件之间的差异在于其工作流程、灵活性以及对用户直接控制的依赖程度。 ### 稳定扩散的工作原理简述: 稳定扩散算法通常涉及从噪声开始逐步推导出图像的过程。这个过程包括几个关键步骤: 1. **初始化**:算法从随机噪音或预设分布开始创建一个新的潜在编码向量。 2. **反向传播**:通过一系列逆向操作将此编码向量转换回原始图像空间。这涉及到复杂的数学运算和迭代优化过程。 3. **调整细节**:随着算法迭代,生成的图像逐渐变得更加清晰和接近于目标图像风格或内容。这一步骤允许用户通过微调初始条件、超参数或其他输入来引导生成过程的方向。 ### 类似Photoshop的“创意填充”: 稳定的扩散在理论上能够支持类似Photoshop“智能填充”的功能,即能够理解并适应现有图像中的模式和结构来生成新内容。然而,这种能力的具体应用和发展取决于具体的实现细节、训练数据集的质量及其多样性,以及算法本身的优化水平。 #### 相关问题: 1. **如何训练稳定的扩散模型以生成特定风格或类型的图像?** 2. **稳定的扩散模型在哪些应用场景中有实际的应用价值?** 3. **相比于传统图像编辑工具,如Photoshop,稳定的扩散模型有何独特优势和局限?** 总之,稳定扩散提供了一种新颖而强大的图像生成方式,虽然在某些方面类似于传统图像处理软件的功能,但它以其独特的机制和可能性开辟了图像创作的新领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值