所谓图片的创成式填充,就是基于原有图片进行扩展或延展,在保证图片合理性的同时实现与原图片的高度契合。是目前图像处理中常见应用之一。这项技术已成为当前图像处理领域的热门应用。过往,此类操作多依赖于Photoshop等专业软件完成。现在,让我们一同探索在Stable Diffusion模型下,如何高效实现这一创意过程。
01、效果
原图片:512*512
横向扩展:1024*512
纵向扩展:512*1024
#02
/操作方法
【第一步】:图生图图片的上传
在图生图功能界面,上传一张图片,我这里上传一张500*500大小的图片。
图生图中比较重要的参数,一个是“缩放模式 ”,选择“缩放后填充空白”;然后是尺寸,如果是横向扩充就增加宽度,如果是纵向扩充就增加高度;单批数量可以根据需求填写,增加抽卡概率;最后尽量将“重绘幅度”加大到“0.8”以上,让AI充分发挥想象。
-
缩放模式:选择“缩放后填充空白”。
-
蒙版区域内容处理:原图,只针对原图片的基础上进行一个小的改动
-
重绘区域:整张图片
-
采样器:DPM++ 2M SDE Karras
-
采样迭代步数:30
-
图片宽高:768*512。原图片是512*512。这里我们保持图片的高度500不变,将图片宽度512横向扩展为768。
-
生成数量:6一次多生成几张,提高抽签概率
-
重绘强度:设置为1
【第二步】ControlNet的设置
启用插件,“控制类型”选择“局部重绘”,也就是我们之前讲到过的inpaint预处理器,然后在预处理器的下拉菜单中选择“inpaint_only+lama”这是专门用于扩图。另外,控制模式选择“更倾向Controlnet”,缩放模式选择“缩放后填充空白”。
相关参数设置如下:
-
控制类型:选择"局部重绘"
-
预处理器:inpaint_only+lama(局部重绘+大型模版,主要用于图片扩展)
-
模型:control_xxx_inpaint
-
控制权重 : 设置为1
-
控制模式:选择“更偏向ControlNet”
-
缩放模式:选择"缩放后填充空白"
【第三步】提示词的编写
可以反推原图片提示词,加入到正向提示词里以保证图片扩展时AI能结合提示词更好发挥,做到最合理保持与原图片的契合度。
【第四步】大模型的选择以及图片的生成
大模型选择和自己图片画风一致的即可,按下【生成】按键,请知悉,由于内容生成的多样性,每次尝试可能不都能完全符合您的预期,因此建议您多次使用此功能,以便从众多结果中挑选出最满意的选项。
#03
/去除人像
将画面中不需要的元素去掉,也是“创成式生成”中非常有用的一个功能,这个功能的实现不需要用到controlnet,直接使用“图生图”中的局部重绘就可以了。
我们以这张图片为例子,看看怎么快速去掉图中的人物。
在使用“局部重绘”时,有一个步骤很关键,就是选择我们的大模型。
我们打开C站,可以看到下载页面有一个版本选择的地方,有的版本号的后面跟了一个inpainting,说明这个模型是专门用于重绘的,所以要下载和使用这个模型。
不用填写任何提示词,只需要将图片放入“局部重绘”中,涂抹掉人物的部分,蒙版可以比人物更大一点,保证能全部包裹住。
蒙版区域内容处理选择“填充”,“重绘幅度”为1。
这样,我们就很快地将人物去掉了。
写在最后
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
