手写数字识别

手写数字识别的简单demo

环境 python3.8 torch 1.5.1+cpu 数据集MINIST

步骤:

1.minist函数下载数据
2.预处理,创建一个迭代器DataLoder
3.可视化数据
4.nn工具箱创建网络
5.实例化模型
6.训练模型
7.可视化结果

结构:

2个hiddenlayer 激活函数relu
在这里插入图片描述

代码

1.准备数据

import numpy as np
import torch
import matplotlib.pyplot as plt
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
from torchvision.datasets import mnist  # 导入内置minist数据
#导入预处理模块
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
#导入nn和优化器
import torch.nn.functional as F
import torch.optim as optim
from torch import  nn

#定义超参数,(训练、测试个数,学习率、迭代次数...)
train_batch_size=64   
test_batch_size=128
learning_rate=0.01
num_epoches=20
lr=0.01
momentum=0.5

导入必要的模块和定义超参数
import os 是为了不让内核崩溃,必须加的一句话

2.下载数据和预处理

#定义预处理,依次放在Compose函数
#transforms.Compose把转换函数组合在一起,先转换为标量再Normalize([0.5],[0.5])对张量进行归一化,0.5是平均值和方差,灰色图像只有一个通道,彩色有三个Normalize([m1,m2,m3],[n1,n2,n3])
transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.5],[0.5])])
#下载数据,download参数控制是否下载,./data目录下有MNIST,可选择False
train_dataset=mnist.MNIST('./data',train=True,transform=transform,download=True)
test_dataset=mnist.MNIST('./data',train=False,transform=transform)
#DataLoader得到生成器,可节省内存,是一个可迭代对象,可以使用迭代器一样使用,理解为数据集的调用
train_loader=DataLoader(train_dataset,batch_size=train_batch_size,shuffle=True)
test_loader=DataLoader(test_dataset,batch_size=test_batch_size,shuffle=False)

关于 transforms torchvision.transforms 参数解读/中文使用手册这个类将多个变换方式结合在一起

mnist torchvision.datasets.MNIST 参数解读/中文使用手册详细讲了各个参数的使用
DataLoderpytorch dataloader数据加载

3.可视化源数据

#可视化源数据,enumerate循环测试集
examples=enumerate(test_loader)
batch_idx,(example_data,example_targets)=next(examples)
fig=plt.figure()  #创建一个图
for i in range(6):
    plt.subplot(2,3,i+1) #子图位置
    plt.tight_layout()
    plt.imshow(example_data[i][0],cmap='gray',interpolation='none')
    plt.title("ground truth:{}".format(example_targets[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()

enumerate是一个循环方法可以同时获得索引和值,enumerate(test_loader)是一个可迭代访问的对象
next(iterator, default) default是迭代结尾的返回值,可写可不写
example_targets是图片实际对应的数字标签
example_data是图片
subplot 子图
plt.imshowmatplotlib.pyplot.imshow()函数的使用
注意第一个参数

4.构建网络

#构建模型
class Net (nn.Module) : #Net继承Module
    """
    Sequential构建网络,函数功能是将网络的层组合到一起
    """
    def __init__(self, in_dim, n_hidden_1, n_hidden_2,out_dim):
        super(Net,self).__init__()  #用Module方法初始化
        self.layer1=nn.Sequential(nn.Linear(in_dim,n_hidden_1),nn.BatchNorm1d(n_hidden_1))
        self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2))
        self.layer3 = nn.Sequential(nn.Linear( n_hidden_2, out_dim))

    def forward(self,x):
        x= F.relu(self.layer1(x))
        x = F.relu(self.layer2(x))
        x=self.layer3(x)
        return x

构建网络层可以基于Module类或者nn.functional
主要区别是 nn.Module继承Module类 ,nn.functional更像纯函数
一般有可学习的层如卷积、全连接、dropout用nn.Module;激活函数、池化层用nn.functional

Net继承nn.Module类
并用父类方法初始化参数
构建层nn.Sequential方法介绍
nn.Linear(n_hidden_1, n_hidden_2) 参数是维度
nn.BatchNorm1d BatchNorm就是在深度神经网络训练过程中使得每一层神经网络的输入保持相同分布的nn.BatchNorm1d()

模型训练时,不需要使用forward,只要在实例化一个对象中传入对应的参数就可以自动调用 forward 函数
请注意,前向传递可以使用成员变量甚至数据本身来确定执行路径——它还可以使用多个参数!

5.实例化网络

#检查GPU
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#实例化网络
model=Net(28*28,300,100,10)  #初始化
model.to(device)
#定义损失函数优化器
criterion=nn.CrossEntropyLoss()
optimizer=optim.SGD(model.parameters(),lr=lr,momentum=momentum)

model=Net(28*28,300,100,10) 初始化,用了_init_函数
model.to(device)这行代码的意思是将所有最开始读取数据时的tensor变量copy一份到device所指定的GPU(CPU)上去,之后的运算都在GPU(CPU)上进行。

SGD随机梯度下降,最普通,没有加速效果,momentum是改良版本
优化算法与Torch.optim库

6.训练模型

#开始训练 ,训练损失、准确率,测试验证损失、准确率数组
losses=[]
acces=[]
eval_losses=[]
eval_acces=[]

定义训练 损失、准确率,测试验证损失、准确率数组,保留每次迭代的结果

for epoch in range(num_epoches):
    train_loss=0
    train_acc=0
    model.train()

#动态修改学习率
    if epoch%5==0:
        optimizer.param_groups[0]['lr']*=0.1
    for img, label in train_loader:
        img=img.to(device)
        label=label.to(device)
        img=img.view(img.size(0),-1)

        #前向传播
        out=model(img)
        loss=criterion(out,label)
        #反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        #记录误差
        train_loss+=loss.item()
        #计算准确率
        _,pred=out.max(1)
        num_correct=(pred==label).sum().item()
        acc =num_correct/img.shape[0]
        train_acc+=acc
    losses.append(train_loss/len(train_loader))
    acces.append(train_acc / len(train_loader))

每次迭代前,将loss acc清零
model.train()训练模式model.train和model.eval用法及区别详解

1.model.train()
启用 BatchNormalization 和 Dropout。
2.model.eval()
不启用 BatchNormalization 和 Dropout。
外循环数据集循环一次为一次迭代
每五次迭代 调整学习率在训练中动态的调整学习率
optimizer.param_groups修改 或者新建 optimizer,但是后者会造成有momentum的sgd收敛中的震荡。
optimizer.param_groups [{}]长度为1的list, optimizer.param_groups[0]长度为6的字典,有lr momentum等参数
内循环一张张图片循环
img.view(img.size(0),-1)将高维数据 平铺为低维
对x.view(x.size(0), -1)的一些理解
-1是自动补齐的意思
前向传播
先将处理过后的数据集喂给model对象,自动执行forward,
得到结果out,再将out和标签label喂给criterion来计算损失函数
反向传播
使用optimizer.zero_grad()手动将梯度设置为零,因为PyTorch在默认情况下会累积梯度
loss.backward() 自动生成梯度
我们收集一组新的梯度,并使用optimizer.step(),执行优化器将其传播回每个网络参数,更新参数。
optimizer.step() 和loss.backward()和scheduler.step()的关系与区别

train_loss将每张图片的损失累加
_, pred = torch.max(out, 1) #按行获取最大值,并返回张量和索引值
torch.max()使用讲解
num_correct = (pred == label).sum().item() # item()将一个值的张量变为标量(元素值)
train_acc也类似

每次迭代后,将结果存入losses acces数组(结果要记得除以长度)因为累计值不是平均值

7.测试集

#测试集效果
eval_loss = 0
eval_acc = 0
#更改模式为预测模式
model.eval()
for img, label in test_loader:
    img = img.to(device)
    label = label.to(device)
    img = img.view(img.size(0), -1)
    out=model(img)
    loss=criterion(out,label)
    #记录误差
    eval_loss += loss.item()
    # 计算准确率
    _, pred = out.max(1)
    num_correct = (pred == label).sum().item()
    acc = num_correct / img.shape[0]
    eval_acc += acc
eval_losses.append(eval_loss / len(test_loader))
eval_acces.append(eval_acc / len(test_loader))
print('epoch:{},train loss:{:.4f},test acc:{:.4f},test loss:{:.4f},test acc:{:.4f}'
      .format(epoch,train_loss/len(train_loader),train_acc / len(train_loader),eval_loss / len(test_loader),eval_acc / len(test_loader)))

每次迭代前,将eval_loss eval_acc清零
model.eval()不启用 BatchNormalization 和 Dropout。
代码跟训练集类似,但是少了反向传播的过程,不用学习参数。只用前向传播来计算结果。

8.可视化训练及测试损失值

plt.title('trainloss')
plt.plot(np.arange(len(losses)),losses)
plt.legend(['trainloss'],loc='upper right')

plt.legend 加图例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值