RPN

Overview

RPN的本质是 “ 基于滑窗的无类别obejct检测器 ” :
这里写图片描述

RPN所在的位置:
这里写图片描述

Note

  • 只有在train时,cls+reg才能得到强监督信息(来源于ground truth)。即ground truth会告诉cls+reg结构,哪些才是真的前景,从而引导cls+reg结构学得正确区分前后景的能力;在reference阶段,就要靠cls+reg自力更生了。
  • 在train阶段,会输出约2000个proposal,但只会抽取其中256个proposal来训练RPN的cls+reg结构;到了reference阶段,则直接输出最高score的300个proposal。此时由于没有了监督信息,所有RPN**并不知道这些proposal是否为前景**,整个过程只是惯性地推送一波无tag的proposal给后面的Fast R-CNN。
  • RPN的运用使得region proposal的额外开销就只有一个两层网络

放大之后是这样:
这里写图片描述

庖丁解牛

RPN由以下三部分构成:

  1. RPN头部 ,通过以下结构生成 anchor(其实就是一堆有编号有坐标的bbox):
    这里写图片描述

    论文中的这幅插图对应的就是 RPN头部
    这里写图片描述
    (曾经以为这张图就是整个RPN,于是百思不得其解,走了不少弯路。。。)

  2. RPN中部分类分支(cls)边框回归分支(bbox reg) 分别对这堆anchor进行各种计算:
    这里写图片描述
    Note: two stage型的检测算法在RPN 之后 还会进行 再一次分类任务边框回归任务,以进一步提升检测精度。

  3. RPN末端,通过对 两个分支的结果进行汇总,来实现对anchor的 初步筛除(先剔除越界的anchor,再根据cls结果通过NMS算法去重)和 初步偏移(根据bbox reg结果),此时输出的都改头换面叫 Proposal 了:
    这里写图片描述

后话

RPN之后,proposal 成为 RoI (感兴趣区域) ,被输入 RoIPooling 或 RoIAlign 中进行 size上的归一化。当然,这些都是 RPN网络 之后 的操作了,严格来说并 不属于 RPN 的范围 了。

图中 绿框内RPN红圈内RoI 以及其对应的 Pooling 操作
这里写图片描述

note

但是如果只在最后一层 feature map 上映射回原图像,且初始产生的anchor被限定了尺寸下限,那么低于最小anchor尺寸的小目标虽然被anchor圈入,在后面的过程中依然容易被漏检。

但是FPN的出现,大大降低了小目标的漏检率,使得RPN如虎添翼。

Source Code

作者的源码

#========= RPN ============

layer {
  name: "rpn_conv/3x3"
  type: "Convolution"
  bottom: "conv5"
  top: "rpn/output"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 256
    kernel_size: 3 pad: 1 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}
layer {
  name: "rpn_relu/3x3"
  type: "ReLU"
  bottom: "rpn/output"
  top: "rpn/output"
}
layer {
  name: "rpn_cls_score"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_cls_score"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 18   # 2(bg/fg) * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}
layer {
  name: "rpn_bbox_pred"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_bbox_pred"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 36   # 4 * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
}
layer {
   bottom: "rpn_cls_score"
   top: "rpn_cls_score_reshape"
   name: "rpn_cls_score_reshape"
   type: "Reshape"
   reshape_param { shape { dim: 0 dim: 2 dim: -1 dim: 0 } }
}
layer {
  name: 'rpn-data'
  type: 'Python'
  bottom: 'rpn_cls_score'
  bottom: 'gt_boxes'
  bottom: 'im_info'
  bottom: 'data'
  top: 'rpn_labels'
  top: 'rpn_bbox_targets'
  top: 'rpn_bbox_inside_weights'
  top: 'rpn_bbox_outside_weights'
  python_param {
    module: 'rpn.anchor_target_layer'
    layer: 'AnchorTargetLayer'
    param_str: "'feat_stride': 16"
  }
}
layer {
  name: "rpn_loss_cls"
  type: "SoftmaxWithLoss"
  bottom: "rpn_cls_score_reshape"
  bottom: "rpn_labels"
  propagate_down: 1
  propagate_down: 0
  top: "rpn_cls_loss"
  loss_weight: 1
  loss_param {
    ignore_label: -1
    normalize: true
  }
}
layer {
  name: "rpn_loss_bbox"
  type: "SmoothL1Loss"
  bottom: "rpn_bbox_pred"
  bottom: "rpn_bbox_targets"
  bottom: 'rpn_bbox_inside_weights'
  bottom: 'rpn_bbox_outside_weights'
  top: "rpn_loss_bbox"
  loss_weight: 1
  smooth_l1_loss_param { sigma: 3.0 }
}

#========= RoI Proposal ============

layer {
  name: "rpn_cls_prob"
  type: "Softmax"
  bottom: "rpn_cls_score_reshape"
  top: "rpn_cls_prob"
}
layer {
  name: 'rpn_cls_prob_reshape'
  type: 'Reshape'
  bottom: 'rpn_cls_prob'
  top: 'rpn_cls_prob_reshape'
  reshape_param { shape { dim: 0 dim: 18 dim: -1 dim: 0 } }
}
layer {
  name: 'proposal'
  type: 'Python'
  bottom: 'rpn_cls_prob_reshape'
  bottom: 'rpn_bbox_pred'
  bottom: 'im_info'
  top: 'rpn_rois'
#  top: 'rpn_scores'
  python_param {
    module: 'rpn.proposal_layer'
    layer: 'ProposalLayer'
    param_str: "'feat_stride': 16"
  }
}
layer {
  name: 'roi-data'
  type: 'Python'
  bottom: 'rpn_rois'
  bottom: 'gt_boxes'
  top: 'rois'
  top: 'labels'
  top: 'bbox_targets'
  top: 'bbox_inside_weights'
  top: 'bbox_outside_weights'
  python_param {
    module: 'rpn.proposal_target_layer'
    layer: 'ProposalTargetLayer'
    param_str: "'num_classes': 21"
  }
}

#========= RCNN ============

layer {
  name: "roi_pool_conv5"
  type: "ROIPooling"
  bottom: "conv5"
  bottom: "rois"
  top: "roi_pool_conv5"
  roi_pooling_param {
    pooled_w: 6
    pooled_h: 6
    spatial_scale: 0.0625 # 1/16
  }
}
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "roi_pool_conv5"
  top: "fc6"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  inner_product_param {
    num_output: 4096
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "fc6"
  top: "fc6"
}
layer {
  name: "drop6"
  type: "Dropout"
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
    scale_train: false
  }
}
layer {
  name: "fc7"
  type: "InnerProduct"
  bottom: "fc6"
  top: "fc7"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  inner_product_param {
    num_output: 4096
  }
}
layer {
  name: "relu7"
  type: "ReLU"
  bottom: "fc7"
  top: "fc7"
}
layer {
  name: "drop7"
  type: "Dropout"
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
    scale_train: false
  }
}
layer {
  name: "cls_score"
  type: "InnerProduct"
  bottom: "fc7"
  top: "cls_score"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  inner_product_param {
    num_output: 21
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "bbox_pred"
  type: "InnerProduct"
  bottom: "fc7"
  top: "bbox_pred"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  inner_product_param {
    num_output: 84
    weight_filler {
      type: "gaussian"
      std: 0.001
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "loss_cls"
  type: "SoftmaxWithLoss"
  bottom: "cls_score"
  bottom: "labels"
  propagate_down: 1
  propagate_down: 0
  top: "cls_loss"
  loss_weight: 1
  loss_param {
    ignore_label: -1
    normalize: true
  }
}
layer {
  name: "loss_bbox"
  type: "SmoothL1Loss"
  bottom: "bbox_pred"
  bottom: "bbox_targets"
  bottom: 'bbox_inside_weights'
  bottom: 'bbox_outside_weights'
  top: "bbox_loss"
  loss_weight: 1
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值