题目
数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值cost[i]
(索引从0开始)。
每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯。
您需要找到达到楼层顶部的最低花费。在开始时,你可以选择从索引为 0 或 1 的元素作为初始阶梯。
示例1
输入: cost = [10, 15, 20]
输出: 15
解释: 最低花费是从cost[1]开始,然后走两步即可到阶梯顶,一共花费15。
示例2
输入: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出: 6
解释: 最低花费方式是从cost[0]开始,逐个经过那些1,跳过cost[3],一共花费6。
分析
这一题与LeetCode198. 打家劫舍类似,都利用了动态规划的思想
只是上面这道题需要我们计算最大值,而这一题需要我们计算的是最小值。
我们仍然使用数组L存放到达每个台阶的最小花费,其中
L[0] = cost[0];
L[1] = cost[1];
当我们到达第i (i >= 2)
阶台阶时,只有两种情况
1. 通过第i - 1阶台阶到达,此时需要花费L[i - 1] + cost[i]的力气
2. 通过第i - 2阶台阶到达,此时需要花费L[i - 2] + cost[i]的力气
所以我们的状态方程为
L[i] = min(L[i - 1], L[i - 2]) + cost[i];
JavaScript代码
/**
* @param {number[]} cost
* @return {number}
*/
var minCostClimbingStairs = function(cost) {
if(cost.length == 0) return 0;
if(cost.length == 1) return cost[0];
var l = new Array();
cost[cost.length] = 0; //增加一位用来保存最后的结果
l[0] = cost[0];
l[1] = cost[1];
for(var i = 2; i < cost.length; i++) {
l[i] = Math.min(l[i - 1], l[i - 2]) + cost[i];
}
return l[cost.length - 1];
};