以下文字摘自《灵机一动·好玩的数学》:“狼人杀”游戏分为狼人、好人两大阵营。在一局“狼人杀”游戏中,1 号玩家说:“2 号是狼人”,2 号玩家说:“3 号是好人”,3 号玩家说:“4 号是狼人”,4 号玩家说:“5 号是好人”,5 号玩家说:“4 号是好人”。已知这 5 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。扮演狼人角色的是哪两号玩家?
本题是这个问题的升级版:已知 N 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。要求你找出扮演狼人角色的是哪几号玩家?
输入格式:
输入在第一行中给出一个正整数 N(5≤N≤100)。随后 N 行,第 i 行给出第 i 号玩家说的话(1≤i≤N),即一个玩家编号,用正号表示好人,负号表示狼人。
输出格式:
如果有解,在一行中按递增顺序输出 2 个狼人的编号,其间以空格分隔,行首尾不得有多余空格。如果解不唯一,则输出最小序列解 —— 即对于两个序列 A=a[1],...,a[M] 和 B=b[1],...,b[M],若存在 0≤k<M 使得 a[i]=b[i] (i≤k),且 a[k+1]<b[k+1],则称序列 A 小于序列 B。若无解则输出 No Solution
。
输入样例 1:
5
-2
+3
-4
+5
+4
输出样例 1:
1 4
输入样例 2:
6
+6
+3
+1
-5
-2
+4
输出样例 2(解不唯一):
1 5
输入样例 3:
5
-2
-3
-4
-5
-1
输出样例 3:
No Solution
这道题我一直没思路,后来看了柳神的代码还是不太懂(其实是太菜),然后找到另一个博主的解析,同样是柳神的思路,只不过意思解释的更适合我这种菜鸡,所以也放进来用作参考了。
其实我总结的思路就是不断的假设i,j为狼人,然后每一次假设中认定数组a就是正确解(i,j为狼人,其他为好人)。然后遍历输入的v,若有人说的话与数组a不符即为说谎者将其放入lie中,最后判断lie的数量以及两个说谎者的身份(一为狼人一为好人)。柳神代码的妙处在于从1-n遍历自动会找到最小序列,相同的思路以前也有(同理还有从后向前遍历找最大),这一些在细节体现的差距值得我学习。
放上柳神的代码:
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> v(n+1);
for (int i = 1; i <= n; i++) cin >> v[i];
for (int i = 1; i <= n; i++) {
for (int j = i + 1; j <= n; j++) {
vector<int> lie, a(n + 1, 1);
a[i] = a[j] = -1;
for (int k = 1; k <= n; k++)
if (v[k] * a[abs(v[k])] < 0) lie.push_back(k);
if (lie.size() == 2 && a[lie[0]] + a[lie[1]] == 0) {
cout << i << " " << j;
return 0;
}
}
}
cout << "No Solution";
return 0;
}