1、Residual Dense Network for Image Super-Resolution
这篇文章提出一种残差密集网络。。
(1)问题:大多数基于CNN的深度SR模型并没有充分利用原始低分辨率(LR)图像的层次特征,从而实现相对较低的性能。
(2)解决方法:
- 本文提出了一种新的残差密集网络(RDN),充分利用了原LR图像的所有层次特征。
- 提出了一种残差密集块(RDB),它不仅可以通过连续内存(CM)机制读取前一个RDB的状态,而且可以通过局部密集连接充分利用其中的所有层。然后通过局部特征融合(LFF)自适应地保留累积的特征。
- 提出了一种全局特征融合方法,将所有RDB的层次特征进行全局特征融合。通过全局残差学习,将浅特征和深特征结合起来,得到原始LR图像的全局密集特征。
(3)网络架构:
(4)RDB:
将残差网络和densenet结合,可以理解为利用密集连接取学习残差。
先密集连接提取特征,然后1×1的卷积核进行局部特征融合。
2、Deep Back-Projection Networks For Super-Resolution
这篇文章提出一种交替上下采样的模型。
详细介绍见:https://blog.csdn.net/shwan_ma/article/details/79611869
(1)提出问题:
传统的前馈学习方法不能完全解决低分辨率和高分辨率图像之间的相互依赖关系,尤其是大尺度放大时。
(2)解决方案:
提出了一种利用上采样层和下采样层的深度反投影网络(DBPN),为每个阶段的投影误差提供了一种误差反馈机制(error feedback),下图(d),并在大尺度上取得了很好地效果。
(3)各种网络结构对比:
(d)为本文设计的网络,通过不断地上下采样,得到多种上采样结果,最后对多个上采样结果进行concat,最后融合重建。
(3) Projection units(投影单元)
上投影和下投影单元结构如下: