WDSR为2018年超分冠军模型,模型与EDSR相比,主要有以下几点改进:
(1)改变模型基本框架
(2)增加channel个数
(3)WN(权重归一化)
权值归一化是神经网络中权值向量的重新参数化,实际就是重新定义权值w的大小和方向。
由下图可以看出,新的w的大小等于g,方向与v一致。
引入WN可以提高训练的学习效率(即10×),提高训练和测试的准确性。
详细介绍参见:https://blog.csdn.net/leviopku/article/details/85048846