超分辨率:WDSR

WDSR为2018年超分冠军模型,模型与EDSR相比,主要有以下几点改进:
(1)改变模型基本框架
在这里插入图片描述(2)增加channel个数
在这里插入图片描述(3)WN(权重归一化)
在这里插入图片描述权值归一化是神经网络中权值向量的重新参数化,实际就是重新定义权值w的大小和方向。
在这里插入图片描述
由下图可以看出,新的w的大小等于g,方向与v一致。
在这里插入图片描述

引入WN可以提高训练的学习效率(即10×),提高训练和测试的准确性。

详细介绍参见:https://blog.csdn.net/leviopku/article/details/85048846

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值